Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D model predicts best planting practices for farmers

26.06.2017

As farmers survey their fields this summer, several questions come to mind: How many plants germinated per acre? How does altering row spacing affect my yields? Does it make a difference if I plant my rows north to south or east to west? Now a computer model can answer these questions by comparing billions of virtual fields with different planting densities, row spacings, and orientations.

The University of Illinois and the Partner Institute for Computational Biology in Shanghai developed this computer model to predict the yield of different crop cultivars in a multitude of planting conditions. Published in BioEnergy-Research, the model depicts the growth of 3D plants, incorporating models of the biochemical and biophysical processes that underlie productivity.


Sugarcane planted in with traditional spacing (pictured here) is better for yields but may be worse for plants and soil quality.

Credit: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Teaming up with the University of Sao Paulo in Brazil, they used the model to address a question for sugarcane producers: How much yield might be sacrificed to take advantage of a possible conservation planting technique?

"Current sugarcane harvesters cut a single row at a time, which is time-consuming and leads to damage of the crop stands," said author Steve Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology. "This could be solved if the crop was planted in double rows with gaps between the double rows. But plants in double rows will shade each other more, causing a potential loss of profitability."

The model found that double-row spacing costs about 10% of productivity compared to traditional row spacing; however, this loss can be reduced to just 2% by choosing cultivars with more horizontal leaves planted in a north-south orientation.

"This model could be applied to other crops to predict optimal planting designs for specific environments," said Yu Wang, a postdoctoral researcher at Illinois who led the study. "It could also be used in reverse to predict the potential outcome for a field."

The authors predict this model will be especially useful when robotic planting becomes more commonplace, which will allow for many more planting permutations.

###

This research was supported by the IGB, Energy Biosciences Institute, Realizing Increased Photosynthetic Efficiency (RIPE) project, and the Chinese Academy of Sciences.

The paper "Development of a Three-Dimensional Ray-Tracing Model of Sugarcane Canopy Photosynthesis and Its Application in Assessing Impacts of Varied Row Spacing" is published by BioEnergy-Research (DOI: 10.1007/s12155-017-9823-x). Co-authors include: Yu Wang, Qingfeng Song, Deepak Jaiswal, Amanda P. de Souza, and Xin-Guang Zhu.

The Carl R. Woese Institute for Genomic Biology (IGB) advances life sciences research through interdisciplinary collaborations within a state-of-the-art genomic research facility at the University of Illinois.

The Energy Biosciences Institute (EBI) is a public-private collaboration to help solve the global energy challenge.

Realizing Increased Photosynthetic Efficiency (RIPE) is an international research project funded by the Bill & Melinda Gates Foundation to engineer plants to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity.

Media Contact

Claire Benjamin
claire@illinois.edu
217-244-0941

 @IGBIllinois

http://www.igb.uiuc.edu 

Claire Benjamin | EurekAlert!

Further reports about: BioSciences Biology IGB Urbana-Champaign crop global energy challenge

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Transfer technique produces wearable gallium nitride gas sensors

10.11.2017 | Power and Electrical Engineering

NASA CubeSat to test miniaturized weather satellite technology

10.11.2017 | Information Technology

Research shows ice sheets as large as Greenland's melted fast in a warming climate

10.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>