Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mulching plus remediation corrects contaminated lawns

29.07.2016

Perennial ryegrass reestablished in 6 weeks after diesel, hydraulic fluid spills

Petroleum-based spills on turfgrass can occur during lawn care and maintenance, primarily as a result of equipment failure or improper refueling. When these spills happen, hazardous hydrocarbons can contaminate soil and compromise the chemical balance of the grass and soil.


Researchers applied diesel and hydraulic fluid spill treatments to Kentucky bluegrass plots in spring. Experiments showed that a combination of remediation and mulching treatments sped up perennial ryegrass reestablishment after the spills.

Photo courtesy of Deying Li

The authors of a study in the June 2016 issue of HortTechnology found that application of mulching materials after soil remediation and reseeding was effective in reestablishing perennial ryegrass in 6 weeks after diesel and hydraulic fluid spills.

"Damage caused by hydrocarbons to turfgrass can be long lasting and difficult to correct due to slow degradation of most hydrocarbons by microbes in soils," explained Longyi Yuan, Yang Gao, and Deying Li, authors of the research report.

They said that the most effective methods currently used to reclaim soils after petroleum-based spills involve leaching contaminants with detergent water and applying absorbents such as a humic substance and activated charcoal. The scientists investigated how mulching and reseeding could be effective in speeding the reestablishment of turfgrass after petroleum-based spills.

In a 2-year study in field plots established with 'Kenblue' Kentucky bluegrass, the researchers applied diesel and hydraulic fluids at a rate of 15 L·m-2. They then applied two liquid humic amendments and an activated flowable charcoal, with tap water/dishwashing detergent used as a control.

Nitrate nitrogen was added to each remediation treatment to facilitate remediation. Next, the spilled areas were seeded with perennial ryegrass and then three mulching treatments (biochar, peat pellets, and paper pellets) were applied at a thickness of 0.375 inch.

Analyses showed that all remediation methods resulted in better green density of newly seeded perennial ryegrass than the untreated control. "The combination of peat pellets, mulching, and remediation with humic amendment 1 resulted in the best turfgrass green density in the reestablished perennial ryegrass," the authors said.

While previous remediation experiments using organic amendments alone found that turfgrass reestablishment took more than 4 months, the combination of remediation and mulching treatments in this study allowed for reestablishment of perennial ryegrass in just 6 weeks.

"This study tested perennial ryegrass only," the authors noted. "However, in a region where cool-season grasses predominate, overseeding with perennial ryegrass immediately after petroleum-based spills to create a grass cover is a practical option. Reseeding with a cool-season grass species conforming to the original lawn in a later stage can then be done if needed."

###

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/content/26/3/250.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>