Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mulching plus remediation corrects contaminated lawns

29.07.2016

Perennial ryegrass reestablished in 6 weeks after diesel, hydraulic fluid spills

Petroleum-based spills on turfgrass can occur during lawn care and maintenance, primarily as a result of equipment failure or improper refueling. When these spills happen, hazardous hydrocarbons can contaminate soil and compromise the chemical balance of the grass and soil.


Researchers applied diesel and hydraulic fluid spill treatments to Kentucky bluegrass plots in spring. Experiments showed that a combination of remediation and mulching treatments sped up perennial ryegrass reestablishment after the spills.

Photo courtesy of Deying Li

The authors of a study in the June 2016 issue of HortTechnology found that application of mulching materials after soil remediation and reseeding was effective in reestablishing perennial ryegrass in 6 weeks after diesel and hydraulic fluid spills.

"Damage caused by hydrocarbons to turfgrass can be long lasting and difficult to correct due to slow degradation of most hydrocarbons by microbes in soils," explained Longyi Yuan, Yang Gao, and Deying Li, authors of the research report.

They said that the most effective methods currently used to reclaim soils after petroleum-based spills involve leaching contaminants with detergent water and applying absorbents such as a humic substance and activated charcoal. The scientists investigated how mulching and reseeding could be effective in speeding the reestablishment of turfgrass after petroleum-based spills.

In a 2-year study in field plots established with 'Kenblue' Kentucky bluegrass, the researchers applied diesel and hydraulic fluids at a rate of 15 L·m-2. They then applied two liquid humic amendments and an activated flowable charcoal, with tap water/dishwashing detergent used as a control.

Nitrate nitrogen was added to each remediation treatment to facilitate remediation. Next, the spilled areas were seeded with perennial ryegrass and then three mulching treatments (biochar, peat pellets, and paper pellets) were applied at a thickness of 0.375 inch.

Analyses showed that all remediation methods resulted in better green density of newly seeded perennial ryegrass than the untreated control. "The combination of peat pellets, mulching, and remediation with humic amendment 1 resulted in the best turfgrass green density in the reestablished perennial ryegrass," the authors said.

While previous remediation experiments using organic amendments alone found that turfgrass reestablishment took more than 4 months, the combination of remediation and mulching treatments in this study allowed for reestablishment of perennial ryegrass in just 6 weeks.

"This study tested perennial ryegrass only," the authors noted. "However, in a region where cool-season grasses predominate, overseeding with perennial ryegrass immediately after petroleum-based spills to create a grass cover is a practical option. Reseeding with a cool-season grass species conforming to the original lawn in a later stage can then be done if needed."

###

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/content/26/3/250.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>