Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU builds high-tech test track to improve crop performance

13.07.2016

Automakers torture test their cars on special tracks that simulate real driving conditions. Germany's automakers have their fabled Nurburgring track. GM has its Desert Proving Ground in California. Now Michigan State University has DEPI - Dynamic Environmental Photosynthetic Imaging - to test-drive plants so scientists and plant breeders can make them work better and produce more.

Many car companies push test models to their limits at Nurburgring before selling them off the showroom floor. For scientists, standard laboratory conditions and reproducible experimental designs have provided much of their understanding of photosynthesis. However, to truly understand one of the world's most-robust biological processes - and many other plant mechanisms - MSU researchers have brought nature to the lab.


MSU builds high-tech test track to improve crop performance.

Courtesy of MSU

The promising capabilities of DEPI are featured on the cover of the current issue of Cell Systems. DEPI will help scientists make better plants by allowing researchers to systematically explore the effects of real-world conditions using sophisticated sensors, cameras, software and more.

"With DEPI and all of its specialized equipment, we can make videos of a plants' living processes," said David Kramer, Hannah Distinguished Professor in Photosynthesis and Bioenergetics at the MSU-DOE Plant Research Laboratory and the paper's co-author. "One way to make better plants is to test drive a range of plants with different genes and determine which genes, or combination of genes, make the plant better in different environmental conditions."

For decades, scientists have been dissecting complex processes like photosynthesis into component parts that are much simpler to study. Focusing on an element, though, can lead to missing what's happening to the entire plant.

Photosynthesis is highly sensitive to rapid changes in environmental conditions like light, temperature, humidity, the availability of water and nutrients etc. Even more critically, when the plant cannot properly control photosynthesis under these conditions, it can produce toxic side reactions that can damage or kill it, leading to loss of yield.

"We now suspect that many, if not most, of the genes in a plant are there to help it cope with environmental changes and perils," Kramer said. "And although we know much about the core machinery of photosynthesis, we have very little idea what these other genes do. Yet these are the very components that not only keep photosynthesis working efficiently but also keep it from killing the plant."

DEPI will not only help shed light on many of these mysteries, but it also will be able to do it at a relatively large scale. Kramer has 16 DEPI's in the MSU Center for Advanced Algal and Plant Phenotyping. In a single DEPI, and its roomy chamber, it can monitor hundreds of plants at the same time.

Scientists can play with light intensities and durations or replay past weather patterns - down to the exact daily fluctuations - or run models of new ones that anticipate the impacts of climate change. The chamber's special cameras can detect and quantify visible signals produced in real time by plants during photosynthesis.

While traditional methods rely on sensors applied to a single leaf at a single point in time, DEPI reveals what is happening in the whole plant, over an unlimited time period, said Jeff Cruz, director of MSU's Center for Advanced Algal and Plant Phenotyping and the paper's lead author.

"As a result, plants are demonstrating a whole range of new processes, most notably varying behaviors under dynamic environmental conditions, such as when light changes rapidly as it might do on a windy day with partially cloudy skies," he said. "Because these simulated conditions are reproducible in DEPI and because of our sophisticated monitors, we can study these processes with high precision and in great detail."

###

Kramer's research is funded in part by the Department of Energy Office of Science, Basic Energy Sciences.

Additional MSU scientists contributing to the research include Linda Savage, Robert Zegarac, Christopher Hall, Mio Cruz, Geoffry Davis, Wm. Kent Kovac and Jin Chen.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews

Layne Cameron | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>