Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular method promises to speed development of food crops

27.01.2016

A new study led by Illinois plant scientists demonstrates the speed, convenience and precision of a new method to confirm the results of transgenic work

The first human farmers needed hundreds of years and a lot of good luck to shape the first domesticated crops. Modern plant breeders wait weeks or months, not centuries, to discover what the literal fruits of their labors might be; now, a study led at Illinois and supported by the Bill & Melinda Gates Foundation has explored the strengths of a molecular method that reduces this wait time to a few days.


Plant breeding efforts, like the Illinois field trial shown here, will benefit from fast and precise technologies to evaluate transgenics.

Photo provided by Haley Ahlers, University of Illinois.

The new study (DOI: 10.1111/pce.12693), published in Plant, Cell and Environment, addresses a central challenge of transgenic plant development: how to reliably evaluate whether genetic material has been successfully introduced.

Researchers at the University of Illinois, the Polish Academy of Sciences, the University of Nebraska-Lincoln and the University of California, Berkeley compared the traditional method to several new ones that have emerged from advances in genomic technology and identified one that is much faster than the standard approach, yet equally reliable. The study was led by Illinois postdoctoral fellows Kasia Glowacka and Johannes Kromdijk.

"For plants with long life cycles, such as our food crops, this will greatly speed the time between genetic transformation or DNA editing, and development of pure breeding lines," said Long, Gutgsell Endowed Professor of Crop Sciences and Plant Biology and the principal investigator for the study. Long is also a member of the Genomic Ecology of Global Change and Biosystems Design research themes and the Energy Biosciences Institute at the Carl R. Woese Institute for Genomic Biology.

To meet the food and fuel needs of an ever-growing global population, researchers benefit from transgenic technologies to develop crops with higher yields and greater resiliency to environmental challenges. None of the technologies used to introduce new genetic material into plants work with 100 percent efficiency. Plants and their offspring must be screened to identify those in which gene transfer was successful.

Traditionally, this was done in part by testing successive generations of plants to see if the desired traits are present and breed true over time. In addition, plant scientists can use one of several molecular methods to determine if a gene or genes have actually been successfully introduced into the plant genome. The "tried and true" method, the Southern blot, yields precise data but is slow and unwieldy. It requires isolating relatively large amounts of plant DNA, using fluorescent or radioactive dye to detect the gene of interest, and performing a week's worth of lab work for results from just a few samples at a time.

The team compared the Southern blot technique with several that use variations of a chemical process called polymerase chain reaction (PCR). This process allows researchers to quantify specific pieces of the introduced DNA sequences by making many additional copies of them, and then estimating the number of copies--somewhat like estimating the amount of bacteria present in a sample by spreading it on a petri dish and letting colonies grow until they are visible.

These methods are much faster than Southern blotting, but if the DNA in each sample does not "grow" at exactly the same rate, the resulting data will be imprecise--size won't be a perfect indicator of the starting quantity.

One method examined by Long's group, digital drop PCR (ddPCR), is designed to overcome this weakness. Rather than using the PCR process to amplify all the DNA in a sample, this method first separates each individual fragment of DNA into its own tiny reaction, much like giving each bacterium its own tiny petri dish to grow in.

PCR then amplifies each fragment until there are enough copies to be easily detected, and the total number of tiny reactions are counted. Because this method, unlike others, separates the growth-like step from the quantification step, it can be very precise even when the reaction isn't perfect. Results can be obtained in less than two days, and many samples can be processed simultaneously.

Long hopes that his group's demonstration that ddPCR is a "reliable, fast and high throughput" technique will help it to become the new standard for those developing transgenic crops. "I believe it will become widely adopted," he said. Although ddPCR is currently more expensive than the other methods, Long said the cost would likely drop quickly, as have the costs of other genomic technologies.

###

The work was funded by the Bill & Melinda Gates Foundation as a part of Realizing Photosynthetic Efficiency, a multi-institutional project directed by Long that aims to address global food needs by developing crops with greater photosynthetic efficiency and higher yields. Eugene W. Price Distinguished Professor of Biotechnology Tom Clemente at the University of Nebraska-Lincoln and postdoctoral fellow Lauriebeth Leonelli and Professor of Plant and Microbial Biology Professor Kris Niyogi at the University of California, Berkeley also contributed to the study.

Nicholas Vasi | EurekAlert!

Further reports about: Biology DNA Genomic Biology Molecular crops food crops genetic material transgenic

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>