Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Is conservation aid preventing deforestation?


With over $3.4 billion spent in international conservation funding to protect biodiversity and stop tropical deforestation in Africa since the early 1990s, it makes sense to ask if the funding is effective. A recent study finds that conservation aid alone has not been able to counteract deforestation pressures, and in some cases may have even exacerbated forest loss.

University of Illinois's Daniel Miller, who studies international environmental politics, and two other researchers examined data from 2000 to 2013 on the rates of deforestation across 42 sub-Saharan countries.

This is an aerial view showing the border area of W National Park in Benin, Africa. Deforestation outside of the park is visible, with relatively better conditions within the park. Forest clearing is beginning to encroach on the park.

Credit: Daniel Miller

"We find evidence that some conservation aid actually leads to a short-term increase in deforestation," Miller says. "Our hypothesis is that it's displacement. The conservation aid may have gone toward a national park in, say, Benin, leading to less deforestation inside the park. That's the good news, but the bad news is that the funding may have just displaced forest clearing activities outside park boundaries. Our study looks at the country-size scale, so results may be capturing this displacement effect."

Miller and his co-authors looked at a sub-set of African countries with high forest cover--countries like the Democratic Republic of Congo and Liberia--to see if dynamics were different. They found that quality of governance--rule of law, government effectiveness, whether citizens have a voice in selecting their leaders--affected the results.

"In heavily forested countries, we found that better governance on its own did not predict less deforestation," Miller says, "but in such countries, better governance apparently allowed conservation aid to have a positive impact in reducing deforestation. It may be that good governance in countries where forests are an important natural resource helps ensure conservation and sustainable management not only in protected areas but outside them as well."

Miller says there is already a lot of research looking at factors such as economic growth and rural population growth as deforestation drivers. A key innovation in this study is to include factors that can mitigate deforestation drivers, like conservation aid and existence of national parks and other projected areas, in the same statistical models.

"Unfortunately, the amount of aid is so little and the pressures to cut down the forest for furniture markets, firewood and building materials for homes, or other uses are so great that the conservation and money and protected areas are not enough to counteract the overall loss of forest in many countries."


The study "Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa" appears in Environmental Research Letters. It was written by Matthew Bare, Craig Kauffman, and Daniel C. Miller. The Gordon and Betty Moore Foundation and the MacArthur Foundation provided funding to support the research.

Media Contact

Debra Levey Larson


Debra Levey Larson | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>