Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is conservation aid preventing deforestation?

02.03.2016

With over $3.4 billion spent in international conservation funding to protect biodiversity and stop tropical deforestation in Africa since the early 1990s, it makes sense to ask if the funding is effective. A recent study finds that conservation aid alone has not been able to counteract deforestation pressures, and in some cases may have even exacerbated forest loss.

University of Illinois's Daniel Miller, who studies international environmental politics, and two other researchers examined data from 2000 to 2013 on the rates of deforestation across 42 sub-Saharan countries.


This is an aerial view showing the border area of W National Park in Benin, Africa. Deforestation outside of the park is visible, with relatively better conditions within the park. Forest clearing is beginning to encroach on the park.

Credit: Daniel Miller

"We find evidence that some conservation aid actually leads to a short-term increase in deforestation," Miller says. "Our hypothesis is that it's displacement. The conservation aid may have gone toward a national park in, say, Benin, leading to less deforestation inside the park. That's the good news, but the bad news is that the funding may have just displaced forest clearing activities outside park boundaries. Our study looks at the country-size scale, so results may be capturing this displacement effect."

Miller and his co-authors looked at a sub-set of African countries with high forest cover--countries like the Democratic Republic of Congo and Liberia--to see if dynamics were different. They found that quality of governance--rule of law, government effectiveness, whether citizens have a voice in selecting their leaders--affected the results.

"In heavily forested countries, we found that better governance on its own did not predict less deforestation," Miller says, "but in such countries, better governance apparently allowed conservation aid to have a positive impact in reducing deforestation. It may be that good governance in countries where forests are an important natural resource helps ensure conservation and sustainable management not only in protected areas but outside them as well."

Miller says there is already a lot of research looking at factors such as economic growth and rural population growth as deforestation drivers. A key innovation in this study is to include factors that can mitigate deforestation drivers, like conservation aid and existence of national parks and other projected areas, in the same statistical models.

"Unfortunately, the amount of aid is so little and the pressures to cut down the forest for furniture markets, firewood and building materials for homes, or other uses are so great that the conservation and money and protected areas are not enough to counteract the overall loss of forest in many countries."

###

The study "Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa" appears in Environmental Research Letters. It was written by Matthew Bare, Craig Kauffman, and Daniel C. Miller. The Gordon and Betty Moore Foundation and the MacArthur Foundation provided funding to support the research.

Media Contact

Debra Levey Larson
dlarson@illinois.edu
217-244-2880

 @uignome

http://aces.illinois.edu/ 

Debra Levey Larson | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>