Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International rice researchers take on world hunger - Maize could help to improve rice yield

03.12.2015

The growth of the world’s population in combination with a reduction of arable land area will require increased crop yields to meet future food needs. Additional problems will be caused by climate change. Due to this, plants are needed that cope better with these new conditions. The long-term C4 Rice Project marks another step on the road to meet these goals. This international project is now entering phase III. Led by scientists at the University of Oxford, researchers from 12 different institutions in 8 countries aim to increase rice yield with the help of new methods. Among them are Professor Mark Stitt and his group at the Max Planck Institute of Molecular Plant Physiology in Potsdam.

Rice is the staple food for more than half of the world’s population. Thus, it is one of the most important crops in the world. Rice uses the C3 photosynthetic pathway, which is the more effective way of CO2 fixation in temperate climates.


Rice terrace view

www.c4rice.com

However, in hot dry environments it is not as efficient, and this is the very scenario which is expected to occur in many regions due to global climate change. Other plants, such as maize and sorghum, use the so called C4 pathway, which works more efficiently in adverse conditions. The researchers of the C4 Rice Project, led by Professor Jane Langdale of University of Oxford, believe that a switch from C3 to C4 could increase rice productivity by 50%.

A change in the photosynthesis strategy would first of all increase the photosynthetic efficiency in rice, resulting in improved energy gain which can be directly used for reproduction and with that for seed production. Moreover, the introduction of C4 is predicted to improve nitrogen use efficiency, double water use efficiency, and increase tolerance to high temperatures. This would make the rice plant well-adapted for future needs.

The principal investigator, Professor Jane Langdale, explained: “Land that currently provides enough rice to feed 27 people will need to support 43 people by 2050. In this context, rice yields need to increase by 50% over the next 35 years. Given that traditional breeding programs have hit a yield barrier, this goal does not seem achievable by traditional methods.”

In addition, rice yield is limited by its natural metabolic capacity. The reason for this is the inherent inefficiency of C3 photosynthesis. Notably, evolution surmounted this inefficiency through the establishment of the C4 photosynthetic pathway, and importantly it did so on multiple occasions in different plant species. This is the reason why researchers consider a switch from C3 to C4 in rice is a realistic goal.

Phases I and II of the programme were focused on identifying new components of the C4 pathway – both biochemical and morphological – as well as validating the functionality of known C4 enzymes in rice. The new Phase III of the project will refine the genetic toolkit that has been assembled and will focus both on understanding the regulatory mechanisms that establish the pathway in C4 plants and on engineering the pathway in rice.

In particular, the researchers at the MPI-MP will work with rice plants which already contain different enzymes of the C4 pathway. Professor Mark Stitt and his team will analyze plant compounds of both natural rice plants and engineered C4 rice plants. This comparison will be the first test for a successful integration of the C4 photosynthesis into rice and its use by the plant. “The engineered plants with new enzymes will use different compounds for photosynthesis, resulting in changed concentrations of these compounds in comparison to the control plants”, explains Dr. John Lunn, senior scientist at the MPI-MP.

Additionally, the researchers will examine the CO2 uptake rates of those plants and its fate. “This test allows us to check whether the new enzymes work in the rice plant and the C4 pathway is operational, and to what extent it replaces the endogenous C3”, describes Dr. John Lunn.

The C4 Rice Project was initiated in 2008 with funding from the Bill & Melinda Gates Foundation, following discussions led by IRRI. Phase III of the project is a collaboration between 12 institutions: Oxford University, IRRI, Cambridge University, Australian National University, Donald Danforth Plant Science Center, Washington State University, University of Minnesota, University of Toronto, Heinrich Heine University, Max Planck Institute of Plant Physiology, Academica Sinica, and the Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology. This phase has been funded by a grant of over 6.4 million Euros from the Bill & Melinda Gates Foundation.

Contact:
Prof. Mark Stitt
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8102
mstitt@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Consultant for press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Find out more at http://C4Rice.com.

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2032995/C4-rice-project

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>