Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International rice researchers take on world hunger - Maize could help to improve rice yield

03.12.2015

The growth of the world’s population in combination with a reduction of arable land area will require increased crop yields to meet future food needs. Additional problems will be caused by climate change. Due to this, plants are needed that cope better with these new conditions. The long-term C4 Rice Project marks another step on the road to meet these goals. This international project is now entering phase III. Led by scientists at the University of Oxford, researchers from 12 different institutions in 8 countries aim to increase rice yield with the help of new methods. Among them are Professor Mark Stitt and his group at the Max Planck Institute of Molecular Plant Physiology in Potsdam.

Rice is the staple food for more than half of the world’s population. Thus, it is one of the most important crops in the world. Rice uses the C3 photosynthetic pathway, which is the more effective way of CO2 fixation in temperate climates.


Rice terrace view

www.c4rice.com

However, in hot dry environments it is not as efficient, and this is the very scenario which is expected to occur in many regions due to global climate change. Other plants, such as maize and sorghum, use the so called C4 pathway, which works more efficiently in adverse conditions. The researchers of the C4 Rice Project, led by Professor Jane Langdale of University of Oxford, believe that a switch from C3 to C4 could increase rice productivity by 50%.

A change in the photosynthesis strategy would first of all increase the photosynthetic efficiency in rice, resulting in improved energy gain which can be directly used for reproduction and with that for seed production. Moreover, the introduction of C4 is predicted to improve nitrogen use efficiency, double water use efficiency, and increase tolerance to high temperatures. This would make the rice plant well-adapted for future needs.

The principal investigator, Professor Jane Langdale, explained: “Land that currently provides enough rice to feed 27 people will need to support 43 people by 2050. In this context, rice yields need to increase by 50% over the next 35 years. Given that traditional breeding programs have hit a yield barrier, this goal does not seem achievable by traditional methods.”

In addition, rice yield is limited by its natural metabolic capacity. The reason for this is the inherent inefficiency of C3 photosynthesis. Notably, evolution surmounted this inefficiency through the establishment of the C4 photosynthetic pathway, and importantly it did so on multiple occasions in different plant species. This is the reason why researchers consider a switch from C3 to C4 in rice is a realistic goal.

Phases I and II of the programme were focused on identifying new components of the C4 pathway – both biochemical and morphological – as well as validating the functionality of known C4 enzymes in rice. The new Phase III of the project will refine the genetic toolkit that has been assembled and will focus both on understanding the regulatory mechanisms that establish the pathway in C4 plants and on engineering the pathway in rice.

In particular, the researchers at the MPI-MP will work with rice plants which already contain different enzymes of the C4 pathway. Professor Mark Stitt and his team will analyze plant compounds of both natural rice plants and engineered C4 rice plants. This comparison will be the first test for a successful integration of the C4 photosynthesis into rice and its use by the plant. “The engineered plants with new enzymes will use different compounds for photosynthesis, resulting in changed concentrations of these compounds in comparison to the control plants”, explains Dr. John Lunn, senior scientist at the MPI-MP.

Additionally, the researchers will examine the CO2 uptake rates of those plants and its fate. “This test allows us to check whether the new enzymes work in the rice plant and the C4 pathway is operational, and to what extent it replaces the endogenous C3”, describes Dr. John Lunn.

The C4 Rice Project was initiated in 2008 with funding from the Bill & Melinda Gates Foundation, following discussions led by IRRI. Phase III of the project is a collaboration between 12 institutions: Oxford University, IRRI, Cambridge University, Australian National University, Donald Danforth Plant Science Center, Washington State University, University of Minnesota, University of Toronto, Heinrich Heine University, Max Planck Institute of Plant Physiology, Academica Sinica, and the Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology. This phase has been funded by a grant of over 6.4 million Euros from the Bill & Melinda Gates Foundation.

Contact:
Prof. Mark Stitt
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8102
mstitt@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Consultant for press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Find out more at http://C4Rice.com.

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2032995/C4-rice-project

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>