Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International rice researchers take on world hunger - Maize could help to improve rice yield

03.12.2015

The growth of the world’s population in combination with a reduction of arable land area will require increased crop yields to meet future food needs. Additional problems will be caused by climate change. Due to this, plants are needed that cope better with these new conditions. The long-term C4 Rice Project marks another step on the road to meet these goals. This international project is now entering phase III. Led by scientists at the University of Oxford, researchers from 12 different institutions in 8 countries aim to increase rice yield with the help of new methods. Among them are Professor Mark Stitt and his group at the Max Planck Institute of Molecular Plant Physiology in Potsdam.

Rice is the staple food for more than half of the world’s population. Thus, it is one of the most important crops in the world. Rice uses the C3 photosynthetic pathway, which is the more effective way of CO2 fixation in temperate climates.


Rice terrace view

www.c4rice.com

However, in hot dry environments it is not as efficient, and this is the very scenario which is expected to occur in many regions due to global climate change. Other plants, such as maize and sorghum, use the so called C4 pathway, which works more efficiently in adverse conditions. The researchers of the C4 Rice Project, led by Professor Jane Langdale of University of Oxford, believe that a switch from C3 to C4 could increase rice productivity by 50%.

A change in the photosynthesis strategy would first of all increase the photosynthetic efficiency in rice, resulting in improved energy gain which can be directly used for reproduction and with that for seed production. Moreover, the introduction of C4 is predicted to improve nitrogen use efficiency, double water use efficiency, and increase tolerance to high temperatures. This would make the rice plant well-adapted for future needs.

The principal investigator, Professor Jane Langdale, explained: “Land that currently provides enough rice to feed 27 people will need to support 43 people by 2050. In this context, rice yields need to increase by 50% over the next 35 years. Given that traditional breeding programs have hit a yield barrier, this goal does not seem achievable by traditional methods.”

In addition, rice yield is limited by its natural metabolic capacity. The reason for this is the inherent inefficiency of C3 photosynthesis. Notably, evolution surmounted this inefficiency through the establishment of the C4 photosynthetic pathway, and importantly it did so on multiple occasions in different plant species. This is the reason why researchers consider a switch from C3 to C4 in rice is a realistic goal.

Phases I and II of the programme were focused on identifying new components of the C4 pathway – both biochemical and morphological – as well as validating the functionality of known C4 enzymes in rice. The new Phase III of the project will refine the genetic toolkit that has been assembled and will focus both on understanding the regulatory mechanisms that establish the pathway in C4 plants and on engineering the pathway in rice.

In particular, the researchers at the MPI-MP will work with rice plants which already contain different enzymes of the C4 pathway. Professor Mark Stitt and his team will analyze plant compounds of both natural rice plants and engineered C4 rice plants. This comparison will be the first test for a successful integration of the C4 photosynthesis into rice and its use by the plant. “The engineered plants with new enzymes will use different compounds for photosynthesis, resulting in changed concentrations of these compounds in comparison to the control plants”, explains Dr. John Lunn, senior scientist at the MPI-MP.

Additionally, the researchers will examine the CO2 uptake rates of those plants and its fate. “This test allows us to check whether the new enzymes work in the rice plant and the C4 pathway is operational, and to what extent it replaces the endogenous C3”, describes Dr. John Lunn.

The C4 Rice Project was initiated in 2008 with funding from the Bill & Melinda Gates Foundation, following discussions led by IRRI. Phase III of the project is a collaboration between 12 institutions: Oxford University, IRRI, Cambridge University, Australian National University, Donald Danforth Plant Science Center, Washington State University, University of Minnesota, University of Toronto, Heinrich Heine University, Max Planck Institute of Plant Physiology, Academica Sinica, and the Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology. This phase has been funded by a grant of over 6.4 million Euros from the Bill & Melinda Gates Foundation.

Contact:
Prof. Mark Stitt
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8102
mstitt@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Consultant for press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Find out more at http://C4Rice.com.

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2032995/C4-rice-project

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>