Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International rice researchers take on world hunger - Maize could help to improve rice yield

03.12.2015

The growth of the world’s population in combination with a reduction of arable land area will require increased crop yields to meet future food needs. Additional problems will be caused by climate change. Due to this, plants are needed that cope better with these new conditions. The long-term C4 Rice Project marks another step on the road to meet these goals. This international project is now entering phase III. Led by scientists at the University of Oxford, researchers from 12 different institutions in 8 countries aim to increase rice yield with the help of new methods. Among them are Professor Mark Stitt and his group at the Max Planck Institute of Molecular Plant Physiology in Potsdam.

Rice is the staple food for more than half of the world’s population. Thus, it is one of the most important crops in the world. Rice uses the C3 photosynthetic pathway, which is the more effective way of CO2 fixation in temperate climates.


Rice terrace view

www.c4rice.com

However, in hot dry environments it is not as efficient, and this is the very scenario which is expected to occur in many regions due to global climate change. Other plants, such as maize and sorghum, use the so called C4 pathway, which works more efficiently in adverse conditions. The researchers of the C4 Rice Project, led by Professor Jane Langdale of University of Oxford, believe that a switch from C3 to C4 could increase rice productivity by 50%.

A change in the photosynthesis strategy would first of all increase the photosynthetic efficiency in rice, resulting in improved energy gain which can be directly used for reproduction and with that for seed production. Moreover, the introduction of C4 is predicted to improve nitrogen use efficiency, double water use efficiency, and increase tolerance to high temperatures. This would make the rice plant well-adapted for future needs.

The principal investigator, Professor Jane Langdale, explained: “Land that currently provides enough rice to feed 27 people will need to support 43 people by 2050. In this context, rice yields need to increase by 50% over the next 35 years. Given that traditional breeding programs have hit a yield barrier, this goal does not seem achievable by traditional methods.”

In addition, rice yield is limited by its natural metabolic capacity. The reason for this is the inherent inefficiency of C3 photosynthesis. Notably, evolution surmounted this inefficiency through the establishment of the C4 photosynthetic pathway, and importantly it did so on multiple occasions in different plant species. This is the reason why researchers consider a switch from C3 to C4 in rice is a realistic goal.

Phases I and II of the programme were focused on identifying new components of the C4 pathway – both biochemical and morphological – as well as validating the functionality of known C4 enzymes in rice. The new Phase III of the project will refine the genetic toolkit that has been assembled and will focus both on understanding the regulatory mechanisms that establish the pathway in C4 plants and on engineering the pathway in rice.

In particular, the researchers at the MPI-MP will work with rice plants which already contain different enzymes of the C4 pathway. Professor Mark Stitt and his team will analyze plant compounds of both natural rice plants and engineered C4 rice plants. This comparison will be the first test for a successful integration of the C4 photosynthesis into rice and its use by the plant. “The engineered plants with new enzymes will use different compounds for photosynthesis, resulting in changed concentrations of these compounds in comparison to the control plants”, explains Dr. John Lunn, senior scientist at the MPI-MP.

Additionally, the researchers will examine the CO2 uptake rates of those plants and its fate. “This test allows us to check whether the new enzymes work in the rice plant and the C4 pathway is operational, and to what extent it replaces the endogenous C3”, describes Dr. John Lunn.

The C4 Rice Project was initiated in 2008 with funding from the Bill & Melinda Gates Foundation, following discussions led by IRRI. Phase III of the project is a collaboration between 12 institutions: Oxford University, IRRI, Cambridge University, Australian National University, Donald Danforth Plant Science Center, Washington State University, University of Minnesota, University of Toronto, Heinrich Heine University, Max Planck Institute of Plant Physiology, Academica Sinica, and the Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology. This phase has been funded by a grant of over 6.4 million Euros from the Bill & Melinda Gates Foundation.

Contact:
Prof. Mark Stitt
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8102
mstitt@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Consultant for press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Find out more at http://C4Rice.com.

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2032995/C4-rice-project

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>