Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In grasslands, longer spring growing season offsets higher summer temperatures

01.03.2016

North American grasslands face mixed bag of climate change effects

Grasslands across North America will face higher summer temperatures and widespread drought by the end of the century, according to a new study.


Kendall Grassland in southeastern Arizona is one of many sites in the research project.

Credit: R.L. Scott, USDA-ARS

But those negative effects in vegetation growth will be largely offset, the research predicts, by an earlier start to the spring growing season and warmer winter temperatures.

Led by ecologists Andrew Richardson and Koen Hufkens of Harvard University, a team of researchers developed a detailed model that enables predictions of how grasslands from Canada to Mexico will react to climate change.

The model is described in a paper published today in the journal Nature Climate Change.

New insights into climate change effects on grasslands

"This research brings new insights into predicting future climate-driven changes in grasslands," says Elizabeth Blood, program director in the National Science Foundation's Division of Environmental Biology, which funded the research. "The results show that annual grassland cover and productivity will increase despite drought-induced reductions in summer productivity and cover."

Ultimately the growing season gets split into two parts, Hufkens said. "You have an earlier spring flush of vegetation, followed by a summer depression where the vegetation withers, then at the end of the season, you see the vegetation rebound again."

Adds Richardson, "The good news is that total grassland productivity is not going to decline, at least for most of the region. But the bad news is that we're going to have this new seasonality that is outside of current practices for rangeland management -- and how to adapt to that is unknown."

To understand the effects of climate change on grasslands, the scientists created a model of the hydrology and vegetation of the region. They used data from the PhenoCam Network, a collection of some 250 Internet-connected cameras that capture images of local vegetation conditions every half-hour.

Using 14 sites that represent a variety of climates, the biologists ran the model against a metric of "greenness" to ensure that it could reproduce results in line with real-world observations.

"These were sites from across North America, from Canada to New Mexico and from California to Illinois," Richardson said. "We used the greenness of the vegetation as a proxy for the activity of that vegetation. We were then able to run the model into the future."

The region was divided into thousands of 10 square-kilometer blocks, allowing researchers to spot important differences in the response to climate change.

"That allows us to look at how patterns emerge in different areas," Hufkens said.

Importantly, Richardson said, the model also uses a daily rather than monthly time step.

Changing seasonal patterns bring challenges

"Grasslands are different than forests in that they respond very quickly to moisture pulses," said Richardson. "This model takes advantage of that -- by running at a daily time scale, it can better represent changing patterns."

The changing conditions could present challenges for farmers, ranchers and others who rely on predictable seasonal changes to manage the landscape.

"These shifting seasons will present new tests for management practices," Richardson cautioned.

For grasslands, the increases in production and losses due to higher summer temperatures largely balance out, Hufkens said.

Although the results suggest that climate change may have some positive effects, both Hufkens and Richardson warned that they are the result of a delicate balance.

"It's getting more arid and that's causing more intense summer droughts, but because of a changing seasonality, vegetation growth is shifting," said Richardson.

The negative effects of drought on ecosystem production can be offset, he believes. "But that raises new questions about appropriate management responses," he said.

"Relying on this increase in productivity, or expecting that climate change will have long-term benefits because of results like this, is like playing the lottery -- the odds are not very good."

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>