Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving artichoke root development, transplant quality

21.07.2016

Optimal nitrogen, fertigation system recommended for minimizing transplant shock in globe artichokes

According to the authors of a new study, transplant shock is very common in globe artichoke grown in semiarid regions of the United States; high air temperatures and drought stress after transplanting can delay root and shoot growth and significantly reduce marketable yield.


A study of globe artichoke determined impacts of pretransplant management of nitrogen and fertigation system on transplant quality and subsequent growth. Photos show artichoke transplant roots after 8 week of fertigation using 150 and 75 ppm N solution (top), and evaluation of transplant stem plasticity and root quality determined by using a digital force attached to a vertical motorized force tester (bottom).

Photo courtesy of Daniel Leskovar

To counteract the effects of heat and insufficient irrigation on artichoke crops, researchers are seeking to determine the best nursery practices for plant nutrition and irrigation.

The researchers also set out to determine if the fertigation method and nitrogen level used in the nursery significantly modifies early vegetative growth or yield when artichokes are grown under surface, subsurface, and overhead linear irrigation.

Leskovar and Othman said the study results (HortScience, May 2016) can be used to improve transplant quality and stand establishment of globe artichoke when transplanted in hot and drought-prone environments.

Artichoke transplants fertilized with 75 mg·L-1 N (low N) had improved root length and surface area and produced shorter and compact transplants, resulting in seedlings more tolerant to field stresses after transplanting in the field. Analyses also showed that artichoke transplants with low level N did not result in yield reductions as compared with transplants grown with high N level under linear, surface, and subsurface drip irrigation.

"This is the first study of globe artichoke that addressed the impact of pretransplant management of nitrogen and fertigation system on transplant quality and subsequent growth, physiology, and yield responses under three distinctive field irrigation systems," the authors noted.

"It demonstrates the importance of N level on improving the overall transplant root system and growth components of globe artichoke containerized transplants and the subsequent adaptation to irrigated field conditions in a semiarid environment."

###

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/51/5/567.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org.

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>