Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How will climate change transform agriculture?

19.12.2014

Climate change impacts will require major but very uncertain transformations of global agriculture systems by mid-century, according to new research from the International Institute for Applied Systems Analysis.

Climate change will require major transformations in agricultural systems, including increased irrigation and moving production from one region to another, according to the new study, published in the journal Environmental Research Letters. However without careful planning for uncertain climate impacts, the chances of getting adaptation wrong are high, the study shows.

The new study by IIASA researchers provides a global scenario analysis that covers nine different climate scenarios, 18 crops and 4 crop management systems, as well as the interactions between crop production, consumption, prices, and trade. It specifically examines adaptations that are investment-intensive and not easily reversible, such as building new water management infrastructure for irrigation, or increases and decreases to the production capacity of a region. Such “transformations” the researchers say, need to be anticipated, but their implementation is particularly plagued by uncertainty.

“There is a lot of uncertainty in how climate change will impact agriculture, and what adaptations will be needed,” says IIASA Ecosystems Services and Management researcher David Leclère, who led the study. “Our new study is the first to examine at a global scale whether the adaptations required from agricultural systems are in the transformational range, and whether these transformations are robust across plausible scenarios. By looking at where, when, why, and which transformations are required, but also in how many scenarios, it lays the groundwork for countries to better plan for the impacts of climate change.”

In line with earlier results, the study finds that the impacts on crop yields of changes in climate, such as increased temperature, changing precipitation levels, along with the increased CO2 atmospheric concentration (which has a fertilizing effect on plants), could lead to anywhere between an 18% decline in global caloric production from cropland, to as much as a 3% increase by 2050. This biophysical impact varies widely across regions, crops, and management systems, thereby creating opportunities for adaptation at the same time.

By combining these climate and yield projections with the IIASA Global Biosphere Management Model (GLOBIOM)—a global model that includes land use, trade, consumption, water resources, and other factors, the researchers identified the likely needed adaptations and transformations for global agricultural systems.

“Our results confirm that the choice of the climate model used for estimating changes in climate largely shapes adaptations such as moving production from one region to another. But it also shows the importance of how regions are interconnected through trade: for example, in Latin America, where yields are projected to decrease in all scenarios, cropland could increase in some scenarios due to increased net exports to North America. In Europe, where yields are expected to increase due to climate change, cultivated land could decrease depending on the scenario, due to limited export opportunities,” says Leclère. Since such major transformations are difficult and expensive to reverse, the researchers say, a comprehensive analysis of interactions between the direct biophysical impacts of climate and market-driven interconnections between regions is vital.

The study also reiterates the importance of limited water resources for future food security in a changing climate, showing that in a large part of the world, increases in irrigation larger than 25% may be required. However, the study found, where this would take place is extremely sensitive to the choice of the climate model as early as in 2030s. Leclère says, “We have known for a long time that changes to rainfall are a major uncertainty. This study shows how important irrigation will be as an adaptive measure, but also how sensitive it is to different climate scenarios.”

Overall, the study finds, while adaptations are largely entering the transformational range by mid-21st century, almost none can be found to be robust across all scenarios. “People often say that agriculture is adaptable—that throughout history, agricultural systems have shown a large capacity to evolve,” says Leclère, “It’s important to examine this assertion further, as achieving a climate-ready global food system will definitely be challenged by the uncertainties at stake.”

“After decades of global research efforts, scientists are only starting to understand the implications of climate change for the future global food system” says Michael Obersteiner, IIASA Ecosystems Services and Management Program Director and a study co-author. “We need to explore new and uncertainty-proof paradigms for long-term decision-making, and we also need a much better understanding of how to manage crucial resources such as water, which may become dramatically scarcer much earlier than previously thought.”

“Modelling tools are key to generate the knowledge for restraining climate change impacts on food security within acceptable boundaries without increasing the pressure on our resources,” says Petr Havlík, IIASA Ecosystems Services and Management researcher and leader of the GLOBIOM modeling team. “Our models show that there is an effective global adaptation strategy to any single climate change scenario. The challenge we face is to find the strategy which fits a hundred scenarios at the same time.”

Reference
Leclere D, Havlik P, Fuss S, Schmid E, Mosnier A, Walsh B, Valin H, Herrero M, Khabarov N, and Obersteiner M. 2014. Climate change induced transformations of agricultural systems: insights from a global model. Environmental Research Letters. http://dx.doi.org/10.1088/1748-9326/9/12/124017

CONTACTS

David Leclère
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 597
leclere@iiasa.ac.at

Petr Havlik
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 511
havlikpt@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at 

Katherine Leitzell | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>