Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How LED lighting treatments affect greenhouse tomato quality

22.12.2015

LEDs show potential as cost-saving alternative to overhead high-pressure sodium lamps

To satisfy increasing consumer demand for locally grown, fresh tomatoes during off-seasons, greenhouse tomato growers often need to rely on supplemental lighting.


Tomato plants received supplemental lighting from high-pressure sodium lamps or from intracanopy (IC) LED towers. Results showed that tomato quality was largely unaffected by the type of light treatment.

Photo courtesy of Michael Dzakovich

Tomato growers are looking to light-emitting diodes (LEDs), favored for their energy-saving potential, as an alternative to high-pressure sodium lamps (HPS) in greenhouse operations. A recent study offers new information about the feasibility of using LEDs in greenhouse tomato operations.

Michael Dzakovich, Celina Gómez, and Cary Mitchell from the Department of Horticulture and Landscape Architecture at Purdue University published the study of supplemental lighting experiments in HortScience (October 2015). They noted that light-emitting diodes are becoming a viable alternative to high-pressure sodium supplementation.

"There is great interest in (LEDs) potential to influence the phytochemical and flavor profile of various high-value crops," the authors said. "However, little fruit quality-attribute work with LEDs has been done on a long-duration, full grow-out of tomatoes."

The researchers conducted three separate studies to investigate the effect of supplemental light quantity and quality on greenhouse-grown tomatoes. Plants were grown either with natural solar radiation only (the control), natural solar radiation plus supplemental lighting from high-pressure sodium lamps, or natural solar radiation plus supplemental light from intracanopy (IC) LED towers.

The scientists analyzed plant responses by collecting chromacity, Brix, titratable acidity, electrical conductivity, and pH measurements. "Contrary to our hypothesis, fruit quality was largely unaffected by direct, IC supplemental lighting," the authors said.

The study also included sensory panels in which tasters ranked tomatoes for color, acidity, and sweetness using an objective scale. The tasters were also asked to rank tomato color, aroma, texture, sweetness, acidity, aftertaste, and overall approval using a five-point hedonic (preference) scale.

"By collecting both physicochemical and sensory data, we were able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality," the authors said. The sensory panels indicated that physicochemical differences were not noticeable to tasters; in fact, the tasters on the testing panels could not discern between tomatoes from different supplemental lighting treatments or those from the unsupplemented controls.

"This study demonstrated that greenhouse tomato fruit quality was unaffected by both the type of supplemental lighting as well as supplemental lighting per se," the scientists said. "Physicochemical measurements indicated only slight variation among fruits grown under different lighting regimes, and these findings were supported by nonsignificant differences in sensory attributes."

The authors said the results are promising for tomato growers interested in reducing energy consumption in greenhouses. "Supplemental IC-LED lighting at the intensities and wavelengths used in this study did not negatively affect greenhouse tomato fruit quality and demonstrates a potential alternative for overhead high-pressure sodium supplementation," they said.

###

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/50/10/1498.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>