Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How algae could save plants from themselves

11.05.2016

Protein discovery is important first step in harnessing the power of green algae for agriculture

Algae may hold the key to feeding the world's burgeoning population. Don't worry; no one is going to make you eat them. But because they are more efficient than most plants at taking in carbon dioxide from the air, algae could transform agriculture. If their efficiency could be transferred to crops, we could grow more food in less time using less water and less nitrogen fertilizer.


The algal pyrenoid could be the key to increasing crop yields. A pyrenoid (blue) is seen in a cross-section of an algal cell by false-colored electron microscopy. The pyrenoid sits inside the chloroplast (green), which harvests light energy to drive carbon fixation. Image is courtesy of Moritz Meyer.

Credit: Moritz Meyer

New work from a team led by Carnegie's Martin Jonikas published in Proceedings of the National Academy of Sciences reveals a protein that is necessary for green algae to achieve such remarkable efficiency. The discovery of this protein is an important first step in harnessing the power of green algae for agriculture.

It all starts with the world's most abundant enzyme, Rubisco.

Rubisco "fixes" (or converts) atmospheric carbon dioxide into carbon-based sugars, such as glucose and sucrose, in all photosynthetic organisms on the planet. This reaction is central to life on Earth as we know it, because nearly all the carbon that makes up living organisms was at some point "fixed" from the atmosphere by this enzyme. The rate of this reaction limits the growth rate of many of our crops, and many scientists think that accelerating this reaction would increase crop yields.

The funny thing about Rubisco is that it first evolved in bacteria about 3 billion years ago, a time when the Earth's atmosphere had more abundant carbon dioxide compared to today. As photosynthetic bacteria became more and more populous on ancient Earth, they changed our atmosphere's composition.

"Rubisco functioned very efficiently in the ancient Earth's carbon dioxide-rich environment," Jonikas said. "But it eventually sucked most of the CO2 out of the atmosphere, to the point where CO2 is a trace gas today."

Rubisco is quite literally a victim of its own success. CO2 makes up only about 0.04 percent of molecules in today's atmosphere. In this low concentration of CO2, Rubisco works extremely slowly, which limits the growth rates of many crops.

It turns out that algae have evolved a way to make Rubisco run faster. It's called the pyrenoid. Think of it as a turbocharger for carbon fixation.

The pyrenoid is a tiny compartment inside the cell that is packed with Rubisco and is surrounded by a sheath of starch. Under a microscope, a pyrenoid looks like a spherical bubble inside the cell. Its job is to concentrate carbon dioxide around Rubisco so that Rubisco can run faster.

A pyrenoid provides such a tremendous growth advantage that nearly all algae in the oceans have one. About a third of the planet's carbon fixation is thought to happen in pyrenoids, yet we know almost nothing about how these structures are formed at a molecular level. Such a molecular understanding is needed before researchers can attempt to engineer pyrenoids into crops, which is expected to enhance crop yields by as much as 60 percent.

The research team focused on a fundamental decades-old mystery: what causes Rubisco to cluster at the core of the pyrenoid?

Jonikas and his team discovered that in their model alga Chlamydomonas, this clustering of Rubisco is mediated by a protein they called EPYC1 for Essential Pyrenoid Component 1. They found that EPYC1 bound with Rubisco and packaged it into the matrix of proteins that forms the pyrenoid's interior. What's more, proteins similar to EPYC1 are found in most pyrenoid-containing algae, and are not found in algae that lack these structures.

"A lot of additional work is needed to fully understand EPYC1 and pyrenoids, but our findings are a first step toward engineering algal carbon-capture efficiency into crops," Jonikas said.

###

The research team also included Carnegie's Luke Mackinder (the lead author), Vivian Chen, Elizabeth Freeman Rosenzweig, Leif Pallesen, Gregory Reeves, and Alan Itakura. The project was a close collaboration with Moritz Meyer, Madeline Mitchell, Oliver Caspari, and Howard Griffiths of the University of Cambridge; Tabea Mettler-Altmann, Frederik Sommer, Timo Mühlhaus, Michael Schroda and Mark Stitt of the Max Planck Institute of Molecular Plant Physiology; Robyn Roth and Ursula Goodenough of Washington University St. Louis; and Stefan Geimer of University of Bayreuth.

This work was funded by the National Science Foundation, the Carnegie Institution for Science, the National Institutes of Health, the Biotechnology and Biological Research Council, and the Federal Ministry of Education and Research in Germany within the framework of the GoFORSYS Research Unit for Systems Biology and the International Max Planck Research School of the Max Planck Society.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Martin Jonikas | EurekAlert!

Further reports about: Atmosphere CO2 carbon dioxide carbon fixation crop yields crops dioxide enzyme green algae photosynthetic

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>