Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut Microbes Enable Coffee Pest to Withstand Extremely Toxic Concentrations of Caffeine

16.07.2015

Berkeley Lab and USDA research could lead to new ways to fight beetle that devastates coffee crops worldwide

The coffee berry borer is the most devastating coffee pest in the world. The tiny beetle is found in most regions where coffee is cultivated, and a big outbreak can slash crop yield by 80 percent.


Berkeley Lab

This colorful representation shows the dominant bacterial groups that live inside the guts of coffee berry borers from seven major coffee producing countries. The bar graph on the left shows the proportion of the most prevalent bacteria, Pseudomonas, in the gut microbiome of the collected beetles.

It’s also a caffeine fiend. The insect is the only coffee pest that uses the caffeine-rich bean as its sole source of food and shelter. It bores into the bean and spends most of its life tucked inside, where it’s exposed to what should be an extremely toxic amount of caffeine for its mass: the equivalent of a 150-pound person downing 500 shots of espresso. Caffeine is harmful to most insects and is believed to act as a natural pest repellant. So how does the coffee berry borer thrive in such a hostile environment?

It relies on the bacteria in its gut, according to new research by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the U.S. Department of Agriculture (USDA), and Mexico’s El Colegio de la Frontera Sur (ECOSUR). Their study appears July 14 in the journal Nature Communications.

The scientists discovered that coffee berry borers worldwide share 14 bacterial species in their digestive tracts that degrade and detoxify caffeine. They also found the most prevalent of these bacteria has a gene that helps break down caffeine. Their research sheds light on the ecology of the destructive bug and could lead to new ways to fight it.

“Instead of using pesticides, perhaps we could target the coffee berry borer’s gut microbiota. We could develop a way to disrupt the bacteria and make caffeine as toxic to this pest as it is to other insects,” says Javier Ceja-Navarro, a scientist in Berkeley Lab’s Earth Sciences Division and lead author of the paper.

Ceja-Navarro and Eoin Brodie of Berkeley Lab led the effort with the USDA’s Fernando Vega, an expert on the coffee berry borer and one of the study’s corresponding authors. Zhao Hao, Ulas Karaoz, Trent Northen, Stefan Jenkins, and Hsiao Chien-Lim of Berkeley Lab; Francisco Infante of ECOSUR; and Petr Kosina of Mexico’s International Maize and Wheat Improvement Center also contributed.

Scientists have extensively studied the beetle, but very little research has focused on how it subsists solely on coffee berries, and the Berkeley Lab and USDA-led team is the first to explore the role of the bacteria in its gut. The idea isn’t as far-fetched as it may seem. Microbes perform key functions in all ecosystems, from cycling nutrients in the soil to shaping the human immune system from inside our digestive tract.

The scientists analyzed coffee berry borers from seven coffee-producing regions: Mexico, Guatemala, Puerto Rico, Hawaii, India, Indonesia and Kenya. They also studied a colony reared at the USDA’s lab in Beltsville, Maryland. Ceja-Navarro removed the digestive tracts from hundreds of deceased beetles, a painstaking process requiring micro-tweezers and steady hands.

“Before this research, I worked with atomic force microscopy, where you have to keep your hands steady, so I got good at it,” says Ceja-Navarro. “But I had to cut down on coffee!”

The scientists immersed the gut bacteria in a special medium containing caffeine as the main nutrient, so only the bacteria that degrade caffeine survived. Fourteen bacterial species were isolated, most of which were found in beetles from all seven coffee-producing regions and the laboratory colony.

These bacteria appear to subsist on caffeine as their sole source of carbon and nitrogen. One of the bacteria, Pseudomonas fulva, was the most prevalent, according to their DNA-based geographic survey.

The scientists also screened the bacteria for a gene called ndmA that is known to transform caffeine. They found that only P. fulva possessed this gene. Ceja-Navarro surmises the other bacteria help break down caffeine using different genes.

To confirm the role of P. fulva in the degradation of caffeine, the researchers administered an antibiotic to a group of beetles that wiped out their gut microbiota. They then fed these beetles a standardized diet based on coffee beans and then analyzed their feces. The caffeine passed through their digestive tracts intact without a hint of degradation.

The scientists next added P. fulva to the beetles’ diet to restock their guts with the caffeine-degrading bacterium. The feces from these beetles were devoid of caffeine, indicating the detoxification process had been restored.

“After that, we knew gut bacteria were key to the beetle’s survival strategy and its ecology in general,” says Eoin Brodie, the study’s senior author. “This is a clear example of how microorganisms, with their rapid adaptive capabilities, can enable higher organisms to colonize new environments.”

The research was funded by the U.S. Department of Agriculture, the Laboratory Directed Research and Development program at Berkeley Lab, and Mexico’s National Council for Science and Technology.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov 

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Contact Information
Dan Krotz
Science Writer
DAKrotz@lbl.gov
Phone: 510-486-4019

Dan Krotz | newswise

Further reports about: Department bacterial species beetle caffeine coffee coffee berry borer ecology microbiota

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>