Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting more out of nature: Genetic toolkit finds new maximum for crop yields

03.11.2014

An array of gene variants provides 'breakthrough benefits' in tomato yield for breeders; other crops next

Scientists at Cold Spring Harbor Laboratory (CSHL) today announced a new way to dramatically increase crop yields by improving upon Mother Nature's offerings. A team led by Associate Professor Zachary Lippman, in collaboration with Israeli colleagues, has discovered a set of gene variations that can boost fruit production in the tomato plant by as much as 100%.


CSHL scientists have identified a set of genetic variants that can dramatically increase tomato production. On the far left is the average yield from a plant that grows standard canning tomatoes. The next three piles were produced by plants with mutations found in the toolkit. The combination of genetic mutations on the far right produces twice as many tomatoes as the standard variety.

Credit: Zachary Lippman/ Cold Spring Harbor Laboratory

Plant breeders will be able to combine different gene variants among the set to create an optimal plant architecture for particular varieties and growing conditions. The set of mutations will enable farmers to maximize yield in tomatoes and potentially many other flowering plants, including staple crops like soybeans.

"Traditionally, plant breeders have relied on natural variation in plant genes to increase yield, but yield gains are plateauing," Lippman notes. "There is an immediate need to find new ways for plant breeders to produce more food." Worldwide more than 842 million people do not receive adequate nourishment, about 1 person in 8 alive today. The cost of food is expected to increase and hunger is likely to become more widespread as the global population expands to beyond 9 billion by 2050.

Ancient humans and early plant breeders recognized that selecting plants with modified architectures could have a major impact on the amount of fruit they produce. In general scientific terms, Lippman explains, "Plant architecture results from a delicate balance between vegetative growth – shoots and leaves – and flower production. To increase crop yields, we want plants to produce as many flowers and fruits as possible, but this requires energy – energy that is produced in leaves."

In tomatoes and all other flowering plants, the balance between vegetative growth and flowers is controlled by a pair of opposing hormones, called florigen and anti-florigen. Prior work by Lippman and Israeli colleagues showed that a mutation in florigen can shift the balance between vegetative growth and flowering, modifying plant architecture in a way that increases yield. This suggested that the balance between florigen and anti-florigen might not yet be optimal in tomato plants, despite centuries of breeding with natural variants.

In a study published today in Nature Genetics, Lippman's team identifies an array of new gene mutations that allow, for the first time, a way to fine-tune the balance of florigen to anti-florigen. This maximizes fruit production without compromising the energy from leaves needed to support those fruits. "We mixed and matched all of the mutations," explains Lippman. "And we were able to produce plants with a broad range of architectures. Together, our collection of mutations forms a powerful toolkit for breeders to pinpoint a new optimum in flowering and architecture that can achieve previously unattainable yield gains."

The breakthrough benefit of the toolkit, says Lippman, is that it allows farmers to customize genetic variations for particular varieties and growing conditions. "For example, we found that different combinations boost yields for cherry tomatoes and other fresh-market tomatoes compared to tomatoes that are processed for sauce, ketchup, and other canned products. We've tested this in multiple genetic backgrounds, in multiple years, and in multiple environments – and the toolkit always provides a new maximum yield."

These results are likely to be broadly applicable to other flowering crops, Lippman says. Mutations that affect florigen and anti-florigen are already known to play a role in controlling plant architecture for the oil crops rapeseed and sunflower, and can be applied in those. But the team is anxious to move on to critical food crops, specifically soybeans, which share many growth similarities with tomato.

This work was supported by grants from a European Research Council-Advanced (ERC), the Israeli Science Foundation (ISF), the Binational Agricultural and Research Fund (BARD), and the National Science Foundation (NSF) Plant Genome Research Program.

"Optimization of crop productivity in tomato using induced mutations in the florigen pathway" appears online in Nature Genetics on November 2, 2014. The authors are: Soon Ju Park, Ke Jiang, Lior Tal, Yoav Yichie, Oron Gar, Dani Zamir, Yuval Eshed, and Zachary Lippman. The paper can be obtained online at: http://www.nature.com/ng/index.html 

About Cold Spring Harbor Laboratory Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu 

Jaclyn Jansen | EurekAlert!

Further reports about: CSHL Genetic Harbor Laboratory Nature Genetics crop crop yields crops flowering plants mutations tomato

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>