Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal intruder ante portas!

19.08.2016

An international research team found new targets to strenghten cell walls against the powdery mildew pathogen in barley

An international research team with participation of the Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)/ Germany and the University of Adelaide/ Australia has provided new targets for the generation of enhanced disease resistance against the powdery mildew pathogen in barley.


Electron microscopic image of barley papilla and powdery mildew appressorium.

Twan Rutten/ IPK

Until now the role of the cell-wall components callose and cellulose in penetration resistance of crop species have been largely unknown, because the genes involved in the observed callose and cellulose accumulation have not been identified unequivocally.

By silencing of the HvCslD2 or the HvGsl6 gene the research team has shown that its down regulation is associated with lower accumulation of callose as well as cellulose and higher susceptibility of barley plants to penetration by the fungal pathogen. This indicates that callose and cellulose contribute to the barley fungal penetration resistance.

In the plant and pathogen co-evolutionary battleground, host plants have evolved a wide range of defence strategies against attacking pathogens. One of the earliest observed defence responses is the formation of cell-wall thickenings called papillae at the site of infection. The papillae are cellular reinforcements formed by depositing polysaccharides between the wall and the plasma membrane.

In case of barley, which was the main focus of the study, the papillae contain callose and cellulose beside other polysaccharides. It was already known that overexpression of the stress-induced callose synthase gene AtGsl5 from the model plant Arabidopsis induced penetration resistance to the powdery mildew pathogen. The research team expected, that there would be an AtGsl5 ortholog present in most monocot species like barley that might mediate callose accumulation during fungal infections.

Thus they employed a comparative genomics approach between Arabidopsis and a series of representative monocot species including barley. A phylogenetic analysis revealed that the gene HvGsl6 has close sequence similarity with AtGs15.

  Transcript profile analysis and transient-induced gene silencing showed that the HvGsl6 transcript is significantly upregulated following powdery mildew infection and that reduced HvGsl6 transcript levels lead to both, decreased accumulation of callose in the papillae and increased susceptibility of barley against the well adapted fungal pathogen.

Very similar results were obtained by silencing a second gene, HvCslD2, which encodes for the cellulose-synthase like protein D2 of barley. Here, the level of accumulating cellulose was reduced and plants suffered not only from enhanced infection by the barley- but also from the wheat powdery mildew, for which barley is normally not a host. In line with the proposed protective function of HvCslD2 in barley its over-expression enhanced resistance.

“The association of the plant cell wall with fungal penetration resistance provides new targets for the improving disease resistance in cereal crops. The identification of the genes involved in the biosynthesis of each papilla component is a major step towards achieving this goal says Dr Alan Little, Senior Research Scientist with the ARC Centre of Excellence in Plant Cell Walls, at the University of Adelaide.

“Our results show that the novel gene HvCslD2 is an interesting target for improving disease resistance in barley and maybe other cereals. It probably acts by making cell-walls of the “plant fortress” less easily penetrated by fungal pathogens ante portas. Now we have to find beneficial alleles for this gene for introgression into modern barley” explains Patrick Schweizer, head of the Pathogen-Stress Genomics lab at the Leibniz-Institute of Plant genetics and crop Plant Research (IPK) in Gatersleben.

Publications:

Douchkov, D., Lueck, S., Hensel, G., Kumlehn, J., Rajaraman, J., Johrde, A., Doblin, M. S., Beahan, C. T., Kopischke, M., Fuchs, R., Lipka, V., Niks, R. E., Bulone, V., Chowdhury, J., Little, A., Burton, R. A., Bacic, A., Fincher, G. B. and Schweizer, P. (2016), The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol. doi:10.1111/nph.14065
(URL: http://onlinelibrary.wiley.com/doi/10.1111/nph.14065/epdf)

Chowdhury J., Schober M.S., Shirley N.J., Singh R.R., Jacobs A.K., Douchkov D., Schweizer P., Fincher G.B., Burton R.A. and Little A. (2016). Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei. New Phytol. doi: 10.1111/nph.14086
(URL: http://onlinelibrary.wiley.com/doi/10.1111/nph.14086/epdf)

Further Information:

Dr. Patrick Schweizer, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466 Seeland, schweizer@ipk-gatersleben.de

Dr Alan Little, University of Adelaide, Adelaide, Australia, alan.little@adelaide.edu.au

Press Contact:

Dr. Sabine Odparlik, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben,
Corrensstrasse 3, D-06466 Seeland, odparlik@ipk-gatersleben.de

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/nph.14065/epdf
http://onlinelibrary.wiley.com/doi/10.1111/nph.14086/epdf

Dr. Sabine Odparlik | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>