Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal intruder ante portas!

19.08.2016

An international research team found new targets to strenghten cell walls against the powdery mildew pathogen in barley

An international research team with participation of the Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)/ Germany and the University of Adelaide/ Australia has provided new targets for the generation of enhanced disease resistance against the powdery mildew pathogen in barley.


Electron microscopic image of barley papilla and powdery mildew appressorium.

Twan Rutten/ IPK

Until now the role of the cell-wall components callose and cellulose in penetration resistance of crop species have been largely unknown, because the genes involved in the observed callose and cellulose accumulation have not been identified unequivocally.

By silencing of the HvCslD2 or the HvGsl6 gene the research team has shown that its down regulation is associated with lower accumulation of callose as well as cellulose and higher susceptibility of barley plants to penetration by the fungal pathogen. This indicates that callose and cellulose contribute to the barley fungal penetration resistance.

In the plant and pathogen co-evolutionary battleground, host plants have evolved a wide range of defence strategies against attacking pathogens. One of the earliest observed defence responses is the formation of cell-wall thickenings called papillae at the site of infection. The papillae are cellular reinforcements formed by depositing polysaccharides between the wall and the plasma membrane.

In case of barley, which was the main focus of the study, the papillae contain callose and cellulose beside other polysaccharides. It was already known that overexpression of the stress-induced callose synthase gene AtGsl5 from the model plant Arabidopsis induced penetration resistance to the powdery mildew pathogen. The research team expected, that there would be an AtGsl5 ortholog present in most monocot species like barley that might mediate callose accumulation during fungal infections.

Thus they employed a comparative genomics approach between Arabidopsis and a series of representative monocot species including barley. A phylogenetic analysis revealed that the gene HvGsl6 has close sequence similarity with AtGs15.

  Transcript profile analysis and transient-induced gene silencing showed that the HvGsl6 transcript is significantly upregulated following powdery mildew infection and that reduced HvGsl6 transcript levels lead to both, decreased accumulation of callose in the papillae and increased susceptibility of barley against the well adapted fungal pathogen.

Very similar results were obtained by silencing a second gene, HvCslD2, which encodes for the cellulose-synthase like protein D2 of barley. Here, the level of accumulating cellulose was reduced and plants suffered not only from enhanced infection by the barley- but also from the wheat powdery mildew, for which barley is normally not a host. In line with the proposed protective function of HvCslD2 in barley its over-expression enhanced resistance.

“The association of the plant cell wall with fungal penetration resistance provides new targets for the improving disease resistance in cereal crops. The identification of the genes involved in the biosynthesis of each papilla component is a major step towards achieving this goal says Dr Alan Little, Senior Research Scientist with the ARC Centre of Excellence in Plant Cell Walls, at the University of Adelaide.

“Our results show that the novel gene HvCslD2 is an interesting target for improving disease resistance in barley and maybe other cereals. It probably acts by making cell-walls of the “plant fortress” less easily penetrated by fungal pathogens ante portas. Now we have to find beneficial alleles for this gene for introgression into modern barley” explains Patrick Schweizer, head of the Pathogen-Stress Genomics lab at the Leibniz-Institute of Plant genetics and crop Plant Research (IPK) in Gatersleben.

Publications:

Douchkov, D., Lueck, S., Hensel, G., Kumlehn, J., Rajaraman, J., Johrde, A., Doblin, M. S., Beahan, C. T., Kopischke, M., Fuchs, R., Lipka, V., Niks, R. E., Bulone, V., Chowdhury, J., Little, A., Burton, R. A., Bacic, A., Fincher, G. B. and Schweizer, P. (2016), The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol. doi:10.1111/nph.14065
(URL: http://onlinelibrary.wiley.com/doi/10.1111/nph.14065/epdf)

Chowdhury J., Schober M.S., Shirley N.J., Singh R.R., Jacobs A.K., Douchkov D., Schweizer P., Fincher G.B., Burton R.A. and Little A. (2016). Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei. New Phytol. doi: 10.1111/nph.14086
(URL: http://onlinelibrary.wiley.com/doi/10.1111/nph.14086/epdf)

Further Information:

Dr. Patrick Schweizer, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466 Seeland, schweizer@ipk-gatersleben.de

Dr Alan Little, University of Adelaide, Adelaide, Australia, alan.little@adelaide.edu.au

Press Contact:

Dr. Sabine Odparlik, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben,
Corrensstrasse 3, D-06466 Seeland, odparlik@ipk-gatersleben.de

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/nph.14065/epdf
http://onlinelibrary.wiley.com/doi/10.1111/nph.14086/epdf

Dr. Sabine Odparlik | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>