Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal intruder ante portas!

19.08.2016

An international research team found new targets to strenghten cell walls against the powdery mildew pathogen in barley

An international research team with participation of the Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)/ Germany and the University of Adelaide/ Australia has provided new targets for the generation of enhanced disease resistance against the powdery mildew pathogen in barley.


Electron microscopic image of barley papilla and powdery mildew appressorium.

Twan Rutten/ IPK

Until now the role of the cell-wall components callose and cellulose in penetration resistance of crop species have been largely unknown, because the genes involved in the observed callose and cellulose accumulation have not been identified unequivocally.

By silencing of the HvCslD2 or the HvGsl6 gene the research team has shown that its down regulation is associated with lower accumulation of callose as well as cellulose and higher susceptibility of barley plants to penetration by the fungal pathogen. This indicates that callose and cellulose contribute to the barley fungal penetration resistance.

In the plant and pathogen co-evolutionary battleground, host plants have evolved a wide range of defence strategies against attacking pathogens. One of the earliest observed defence responses is the formation of cell-wall thickenings called papillae at the site of infection. The papillae are cellular reinforcements formed by depositing polysaccharides between the wall and the plasma membrane.

In case of barley, which was the main focus of the study, the papillae contain callose and cellulose beside other polysaccharides. It was already known that overexpression of the stress-induced callose synthase gene AtGsl5 from the model plant Arabidopsis induced penetration resistance to the powdery mildew pathogen. The research team expected, that there would be an AtGsl5 ortholog present in most monocot species like barley that might mediate callose accumulation during fungal infections.

Thus they employed a comparative genomics approach between Arabidopsis and a series of representative monocot species including barley. A phylogenetic analysis revealed that the gene HvGsl6 has close sequence similarity with AtGs15.

  Transcript profile analysis and transient-induced gene silencing showed that the HvGsl6 transcript is significantly upregulated following powdery mildew infection and that reduced HvGsl6 transcript levels lead to both, decreased accumulation of callose in the papillae and increased susceptibility of barley against the well adapted fungal pathogen.

Very similar results were obtained by silencing a second gene, HvCslD2, which encodes for the cellulose-synthase like protein D2 of barley. Here, the level of accumulating cellulose was reduced and plants suffered not only from enhanced infection by the barley- but also from the wheat powdery mildew, for which barley is normally not a host. In line with the proposed protective function of HvCslD2 in barley its over-expression enhanced resistance.

“The association of the plant cell wall with fungal penetration resistance provides new targets for the improving disease resistance in cereal crops. The identification of the genes involved in the biosynthesis of each papilla component is a major step towards achieving this goal says Dr Alan Little, Senior Research Scientist with the ARC Centre of Excellence in Plant Cell Walls, at the University of Adelaide.

“Our results show that the novel gene HvCslD2 is an interesting target for improving disease resistance in barley and maybe other cereals. It probably acts by making cell-walls of the “plant fortress” less easily penetrated by fungal pathogens ante portas. Now we have to find beneficial alleles for this gene for introgression into modern barley” explains Patrick Schweizer, head of the Pathogen-Stress Genomics lab at the Leibniz-Institute of Plant genetics and crop Plant Research (IPK) in Gatersleben.

Publications:

Douchkov, D., Lueck, S., Hensel, G., Kumlehn, J., Rajaraman, J., Johrde, A., Doblin, M. S., Beahan, C. T., Kopischke, M., Fuchs, R., Lipka, V., Niks, R. E., Bulone, V., Chowdhury, J., Little, A., Burton, R. A., Bacic, A., Fincher, G. B. and Schweizer, P. (2016), The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol. doi:10.1111/nph.14065
(URL: http://onlinelibrary.wiley.com/doi/10.1111/nph.14065/epdf)

Chowdhury J., Schober M.S., Shirley N.J., Singh R.R., Jacobs A.K., Douchkov D., Schweizer P., Fincher G.B., Burton R.A. and Little A. (2016). Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei. New Phytol. doi: 10.1111/nph.14086
(URL: http://onlinelibrary.wiley.com/doi/10.1111/nph.14086/epdf)

Further Information:

Dr. Patrick Schweizer, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466 Seeland, schweizer@ipk-gatersleben.de

Dr Alan Little, University of Adelaide, Adelaide, Australia, alan.little@adelaide.edu.au

Press Contact:

Dr. Sabine Odparlik, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben,
Corrensstrasse 3, D-06466 Seeland, odparlik@ipk-gatersleben.de

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/nph.14065/epdf
http://onlinelibrary.wiley.com/doi/10.1111/nph.14086/epdf

Dr. Sabine Odparlik | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>