Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From waste to value: Capabilities of biogas-producing microorganisms are underestimated

17.02.2015

Researchers at the Leibniz Institute for Agricultural Engineering in Potsdam, Germany, have shown that anaerobic microorganisms can use complex organic pollutants for biogas production. Phenols, furans, aldehydes and ketones, which are frequently found in liquid by-products of thermochemical conversion of biomass, can easily and efficiently be degraded into bio-methane. This provides the basis for an efficient and sustainable integration of carbonization processes such as pyrolysis and hydrothermal carbonization (HTC) into bio-refinery concepts. The results have now been published in the renowned scientific journal “Bioresource Technology”.

The production of materials and chemicals from renewable resources usually bases on biological or thermochemical processes. The latter possess the advantage of very high reaction rates. At temperatures of 250°C and above, even complex organic compounds that are recalcitrant to biologic degradation like lignin are rapidly decomposed.


Laboratory biogas test at the Leibniz Institute for Agricultural Engineering.

Photo: Werner/ATB

However, thermochemical processes are highly unselective in their product pattern. Besides the target products a range of more or less problematic organic compounds is formed. This decreases the product yield and causes additional costs for the waste water treatment.

The researchers in Potsdam have put focus on the liquid by-products of thermochemical biomass conversion. This includes waste waters from HTC as well as pyrolysis. Both processes are highly flexible both in their feedstocks and products and are therefore expected to fulfil important roles in future bio-refinery concepts. However, until now a major problem is: These processes form waste waters that contain various environmental hazardous substances such as phenols, furans, aldehydes and ketones.

The main product of pyrolysis and HTC is biochar, a carbon and energy-rich solid material, which can be used as fuel, but also for a range of further applications from soil amendment to carbon electronics. By-products of pyrolysis are the so-called syngas, which can be used as a fuel, and a condensate composed of volatile compounds, for which no satisfying type of use exists today.

In the HTC, a process liquid is formed which contains a wide variety of organic and mineral compounds. Thus, both waste waters from HTC and pyrolysis require an effective treatment before they can be released into the environment.

In their latest article published in the scientific journal “Bioresource Technology”, the Potsdam researchers now report on the successful anaerobic biological conversion of water-soluble pyrolysis condensates in laboratory tests.

The condensates were obtained from pyrolysis of solid digestate, which is a by-product of biogas production, at temperatures between 330°C and 530°C. Large parts of the organic compounds contained in these condensates could be degraded and transformed into bio-methane. After the biological treatment, the analysed toxic components 5-HMF, phenol, furfural, catechol and guaiacol were removed below detection limit.

Only cresol remained detectable, but was still degraded by 10 to 60 %. The temperature at which the condensate was produced had strong impact: the higher the pyrolysis temperature the less organic compounds were degraded. In detail, increasing the temperature from 330 to 530°C decreased the overall degradation efficiency, expressed as the chemical oxygen demand (COD), from 57 to 37 %.

“Our results indicate the range of synergistic options to combine thermochemical processes like pyrolysis and HTC with biogas production”, project leader Jan Mumme emphasizes the added value of these integrated systems. “In addition to the production of biochar, energy can also be obtained in form of biogas”, adds junior scientist Tobias Hübner. “Recently, high research activity is seen concerning the integration of thermochemical and biological processes following bio-refinery concepts. With our research results we want to contribute to a better economic performance and a higher sustainability of these systems”, concludes Mumme.

The use of HTC waste water for biogas production was demonstrated by the APECS researchers earlier in 2013. In another joint study with Fraunhofer Institute for Chemical Technology ICT Pfinztal, quantification of individual substances in the HTC liquid by NIR showed promising results that could lead to an advanced control of biomass conversion and, thus, to higher efficiency.

The project “APECS – Anaerobic pathways to Renewable Energies and Carbon Sinks” was funded 2009 to 2014 by the German Federal Ministry of Education and Research (BMBF) under the funding scheme „Bioenergy 2021“. Project leader Dr. Jan Mumme currently works as guest researcher with the UK Biochar Research Centre at the University of Edinburgh.

Literature:

Hübner, T., Mumme, J. (2015): Integration of pyrolysis and anaerobic digestion - use of aqueous liquor from digestate pyrolysis for biogas production. Bioresource Technology, DOI: 10.1016/j.biortech.2015.02.037

Wirth, B., Mumme, J. (2013): Anaerobic digestion of waste water from hydrothermal carbonization of corn silage. Applied Bioenergy 1, 1-10. Available online at: http://tinyurl.com/oqwrksp

Reza, M.T., Becker, W., Sachsenheimer, K., Mumme, J. (2014): Hydrothermal carbonization (HTC): near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products. Bioresource Technology 161, 91-101. Available online at: http://tinyurl.com/lhm7op2

Contact:

Dr. Jan Mumme – Leader of the junior research group APECS
jan.mumme@ed.ac.uk; jmumme@atb-potsdam.de

Helene Foltan – Communication
Phone: +49 (0) 331 5699-820, mail: hfoltan@atb-potsdam.de

Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB)
Max-Eyth-Allee 100, 14469 Potsdam, Germany, http://www.atb-potsdam.de

Helene Foltan | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>