Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From waste to value: Capabilities of biogas-producing microorganisms are underestimated

17.02.2015

Researchers at the Leibniz Institute for Agricultural Engineering in Potsdam, Germany, have shown that anaerobic microorganisms can use complex organic pollutants for biogas production. Phenols, furans, aldehydes and ketones, which are frequently found in liquid by-products of thermochemical conversion of biomass, can easily and efficiently be degraded into bio-methane. This provides the basis for an efficient and sustainable integration of carbonization processes such as pyrolysis and hydrothermal carbonization (HTC) into bio-refinery concepts. The results have now been published in the renowned scientific journal “Bioresource Technology”.

The production of materials and chemicals from renewable resources usually bases on biological or thermochemical processes. The latter possess the advantage of very high reaction rates. At temperatures of 250°C and above, even complex organic compounds that are recalcitrant to biologic degradation like lignin are rapidly decomposed.


Laboratory biogas test at the Leibniz Institute for Agricultural Engineering.

Photo: Werner/ATB

However, thermochemical processes are highly unselective in their product pattern. Besides the target products a range of more or less problematic organic compounds is formed. This decreases the product yield and causes additional costs for the waste water treatment.

The researchers in Potsdam have put focus on the liquid by-products of thermochemical biomass conversion. This includes waste waters from HTC as well as pyrolysis. Both processes are highly flexible both in their feedstocks and products and are therefore expected to fulfil important roles in future bio-refinery concepts. However, until now a major problem is: These processes form waste waters that contain various environmental hazardous substances such as phenols, furans, aldehydes and ketones.

The main product of pyrolysis and HTC is biochar, a carbon and energy-rich solid material, which can be used as fuel, but also for a range of further applications from soil amendment to carbon electronics. By-products of pyrolysis are the so-called syngas, which can be used as a fuel, and a condensate composed of volatile compounds, for which no satisfying type of use exists today.

In the HTC, a process liquid is formed which contains a wide variety of organic and mineral compounds. Thus, both waste waters from HTC and pyrolysis require an effective treatment before they can be released into the environment.

In their latest article published in the scientific journal “Bioresource Technology”, the Potsdam researchers now report on the successful anaerobic biological conversion of water-soluble pyrolysis condensates in laboratory tests.

The condensates were obtained from pyrolysis of solid digestate, which is a by-product of biogas production, at temperatures between 330°C and 530°C. Large parts of the organic compounds contained in these condensates could be degraded and transformed into bio-methane. After the biological treatment, the analysed toxic components 5-HMF, phenol, furfural, catechol and guaiacol were removed below detection limit.

Only cresol remained detectable, but was still degraded by 10 to 60 %. The temperature at which the condensate was produced had strong impact: the higher the pyrolysis temperature the less organic compounds were degraded. In detail, increasing the temperature from 330 to 530°C decreased the overall degradation efficiency, expressed as the chemical oxygen demand (COD), from 57 to 37 %.

“Our results indicate the range of synergistic options to combine thermochemical processes like pyrolysis and HTC with biogas production”, project leader Jan Mumme emphasizes the added value of these integrated systems. “In addition to the production of biochar, energy can also be obtained in form of biogas”, adds junior scientist Tobias Hübner. “Recently, high research activity is seen concerning the integration of thermochemical and biological processes following bio-refinery concepts. With our research results we want to contribute to a better economic performance and a higher sustainability of these systems”, concludes Mumme.

The use of HTC waste water for biogas production was demonstrated by the APECS researchers earlier in 2013. In another joint study with Fraunhofer Institute for Chemical Technology ICT Pfinztal, quantification of individual substances in the HTC liquid by NIR showed promising results that could lead to an advanced control of biomass conversion and, thus, to higher efficiency.

The project “APECS – Anaerobic pathways to Renewable Energies and Carbon Sinks” was funded 2009 to 2014 by the German Federal Ministry of Education and Research (BMBF) under the funding scheme „Bioenergy 2021“. Project leader Dr. Jan Mumme currently works as guest researcher with the UK Biochar Research Centre at the University of Edinburgh.

Literature:

Hübner, T., Mumme, J. (2015): Integration of pyrolysis and anaerobic digestion - use of aqueous liquor from digestate pyrolysis for biogas production. Bioresource Technology, DOI: 10.1016/j.biortech.2015.02.037

Wirth, B., Mumme, J. (2013): Anaerobic digestion of waste water from hydrothermal carbonization of corn silage. Applied Bioenergy 1, 1-10. Available online at: http://tinyurl.com/oqwrksp

Reza, M.T., Becker, W., Sachsenheimer, K., Mumme, J. (2014): Hydrothermal carbonization (HTC): near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products. Bioresource Technology 161, 91-101. Available online at: http://tinyurl.com/lhm7op2

Contact:

Dr. Jan Mumme – Leader of the junior research group APECS
jan.mumme@ed.ac.uk; jmumme@atb-potsdam.de

Helene Foltan – Communication
Phone: +49 (0) 331 5699-820, mail: hfoltan@atb-potsdam.de

Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB)
Max-Eyth-Allee 100, 14469 Potsdam, Germany, http://www.atb-potsdam.de

Helene Foltan | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>