Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forests endangered by climate change, international experts conclude

20.11.2014

Forests cover one-third of the Earth’s land surface, and they provide many essential ecological, economic and social services. During the last decades, the scientific community has been alarmed by reports of widespread tree and forest mortality worldwide. Research indicates that this mortality is linked to warmer temperatures, especially when combined with droughts. However, substantial uncertainties exist about precisely how the increasing temperatures and drought cause trees to die. Therefore, realistic predictions of future forest condition and risk assessments of potential broad-scale forest loss are currently not available.

To broadly address this topic, an international group of 65 leading tree physiologists, forest ecologists and modelers from six continents met at the Max Planck Institute for Biogeochemistry in Jena, Germany, from Oct 20 – 23, 2014. Organized by Henrik Hartmann, group leader in the Department Biogeochemical Processes, the meeting facilitated interdisciplinary exchanges between diverse experts as a means to assess the frontiers of research on climate-induced tree mortality.


Widespread mortality of Picea engelmanni at Wolf Creek Pass, Colorado

Picture credit: (C) Craig Allen, USGS, Los Alamos, USA

Covering a wide range of disciplines, all meeting participants provided their two most pressing research questions. As a result from a series of discussions and debates, the workshop scientists jointly developed the following declaration to raise public awareness on the anticipated worldwide climate-induced tree mortality, which bears immense societal and ecological consequences.

Declaration
• Forests are extremely important to society through the many services they provide, and all peoples around the world either depend directly on forests for their livelihood or indirectly benefit from forests.

• Despite existing scientific uncertainties, this group of ecological researchers is confident that many forests are at substantial risk of increased tree death rates and even widespread tree die-off due to projected warmer temperatures, particularly during droughts.

• Thus, this ecological research community wishes to raise awareness of this risk for substan-tial consequences for society from increased forest die-off expected with climate warming, and also that we can reduce this risk by reducing greenhouse gas emissions.

The wide variation in both geographical study sites and fields of expertise represented by the workshop participants provided an excellent basis to determine current research needs and to help guide future research efforts on drought- and heat-induced tree mortality. The experts reconfirmed that forest health assessments on a global scale are lacking. Concomitantly, the geographical extent of forest die-off at the global scale and the vulnerability of individual biomes to increasing temperatures remain highly uncertain. To determine the patterns and trends of forest mortality globally, researchers urged the development of a global monitoring network on forest conditions, based on both internationally available plot networks and remote sensing. “The scientists at our workshop jointly concluded that such data are not only critical to motivate action from governments, policy makers and forest managers, but also to devise specific action strategies to mitigate the underlying climatic conditions”, Henrik Hartmann said.

The breadth of expertise represented, the highly interactive program and the open atmosphere made the workshop a big success. Nearly all scientists have agreed to reconvene in follow-up workshops, to further address the future of our forests.

For further information please see the meeting webpage at https://www.bgc-jena.mpg.de/bgp/pmwiki.php/Main/MortalityWorkshop 

Contact:
Dr. Henrik Hartmann
Max Planck Institute for Biogeochemistry
Hans Knöll Str. 10
07745 Jena, Germany
hhart@bgc-jena.mpg.de

http://www.bgc-jena.mpg.de 

Susanne Héjja | Max-Planck-Institut

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>