Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest Management Yields Higher Productivity through Biodiversity

14.10.2016

Scientists have conducted the first worldwide study of biodiversity and its impact on the productivity of forests. Data from more than 770,000 observation points from 44 countries were evaluated for this purpose. The samples included in the study comprised 8,700 species of trees from mangroves to trees in tropical rainforests, Central Europe, tundras, and dry savannas to populations in Mediterranean forests. The authors conclude that a decline in the number of species leads to massive cuts in the productivity of forests, whereas monocultures converted into mixed stands can yield significantly higher levels of timber growth.

The highest levels of biodiversity in the world are found in forests, but deforestation, forest degradation, and climate change are having a serious impact on half of all tree species. Although the preservation of the tree stock and sustainable forest management have been the subject of much discussion and have been promoted through environmental measures across the globe, the general decline in species, along with its serious consequences, continues.


Experimental plots with mixed stands of Douglas fir-European beech in Bavarian lowlands.

(Photo: Leonhard Steinacker/ TUM)

The study published in the current issue of “Science” illustrates how the global decline in biodiversity is accompanied by a decline in timber growth.

“On the one hand, the study sets new standards because of its geostatistical methodology and global scope. It included an immense volume of data on biodiversity and productivity from nearly 50 countries throughout the world, which has never been done before in this field of science," said co-author Professor Hans Pretzsch, the Director of the Chair of Forest Growth and Yield Science at the Technical University of Munich (TUM).

On the other hand, the research results also lend further weight to the Brundtland Report and the Helsinki and Montreal resolutions. "The conclusion of our study is that, for example, when the number of species declines by 10 percent the wood production decreases on average by six to seven percent. And the rate of decline increases exponentially with further reduction of species richness” said Pretzsch. His team contributed a comprehensive data set of inventories and long-term experimental plots of pure and mixed stands in Central Europe.

Experimental Data over a Period of More than 150 Years

“The inventories and experimental plot data from more than 150 years demonstrate how timber growth decreases in parallel with the number of species,” Professor Pretzsch explained, “and how it can increase toward mixed stands again with the conversion of forest monocultures.” Particularly in the 1950s and 60s, Germany heavily relied on forest monocultures with only one species, such as spruce or pine, “a policy that we have consciously backed away from in the recent years. Meanwhile, the silviculture guidelines of many countries stipulate that, whenever possible, stocks should be comprised of two or three species.”

The study published in Science, which took into account the major global forest ecosystems, clearly shows that in addition to the many ecological and social benefits, mixed stands can also provide a material benefit in terms of increased productivity.

Annual Loss Estimated at around 490 Billion US Dollars

The authors have hypothetically calculated what would happen if the species continued to decline throughout the world as they have in recent years: If mixed forests continue to be cleared and converted into monocultures such as eucalyptus or pine, then productivity will steadily decrease.

With a species impoverishment of 99 percent, the approximate loss in value would be of 166 to 490 billion US dollars per year. The authors of the study note that these high losses amount to the double times the annual global expenditure for the conservation of biodiversity. Other losses caused by the reduction in biodiversity include decreases in genetic diversity, protective functions, and recovery functions, which go far beyond the reduction in timber production.

The results of the study provide the Intergovernmental Platform on Biodiversity and Ecosystem Services (UN IPBES) and the United Nations Convention on Biological Diversity (UNCBD) with an important quantitative basis for the intelligent protection and sustainable management of forests.

Publication:
Liang, J., Crowther, TW., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, EI., Salas, C., Lee, E., Lee, B., Kim, HS, Bruelheide, H, Coomes, DA, Piotto, D, Sunderland, T, Schmid, B, Gourlet-Fleury, S, Sonké, B, Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, B., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T, Bouriaud, O, Bussotti, F, Finér, L, Jaroszewicz, B, Jucker, T, Valladares, V, Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, AR, Rovero, F, Bitariho, R, Niklaus, PA, Alvarez-Loayza, P, Chamuya, N, Valencia, R, Mortier, F, Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L. and Reich, P.B.: Positive Biodiversity–Productivity Relationship Predominant in Global Forests, Science 2016. DOI: 10.1126/science.aaf8957

Video:
http://www.minuteearth.com/biodiversity

Photos in High-Resolution: https://mediatum.ub.tum.de/1328858?id=1328858

Contact:
Prof. Dr. Dr. h.c. Hans Pretzsch
Technical University of Munich
Chair of Forest Growth and Yield Science
Hans-Carl-von-Carlowitz Platz 2
85354 Freising
Tel: +49 (8161) 71-4710
Email: h.pretzsch@lrz.tum.de

Remarks:

Forest Scholars Worldwide Team Up For Biodiversity Research

The research, published on October 14th, 2016 in the journal Science, marks the first major accomplishment of the team, formally known as the Global Forest Biodiversity Initiative (GFBI). Established in 2016, GFBI is an international, interdisciplinary, and multi-stakeholder research collaborative that aims at better understanding broad-scale patterns and processes associated with the planet's four billion hectares of forested ecosystems. For details, visit http://www.GFBinitiative.org/.

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33457/

Dr. Ulrich Marsch | Technische Universität München

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>