Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest Management Yields Higher Productivity through Biodiversity

14.10.2016

Scientists have conducted the first worldwide study of biodiversity and its impact on the productivity of forests. Data from more than 770,000 observation points from 44 countries were evaluated for this purpose. The samples included in the study comprised 8,700 species of trees from mangroves to trees in tropical rainforests, Central Europe, tundras, and dry savannas to populations in Mediterranean forests. The authors conclude that a decline in the number of species leads to massive cuts in the productivity of forests, whereas monocultures converted into mixed stands can yield significantly higher levels of timber growth.

The highest levels of biodiversity in the world are found in forests, but deforestation, forest degradation, and climate change are having a serious impact on half of all tree species. Although the preservation of the tree stock and sustainable forest management have been the subject of much discussion and have been promoted through environmental measures across the globe, the general decline in species, along with its serious consequences, continues.


Experimental plots with mixed stands of Douglas fir-European beech in Bavarian lowlands.

(Photo: Leonhard Steinacker/ TUM)

The study published in the current issue of “Science” illustrates how the global decline in biodiversity is accompanied by a decline in timber growth.

“On the one hand, the study sets new standards because of its geostatistical methodology and global scope. It included an immense volume of data on biodiversity and productivity from nearly 50 countries throughout the world, which has never been done before in this field of science," said co-author Professor Hans Pretzsch, the Director of the Chair of Forest Growth and Yield Science at the Technical University of Munich (TUM).

On the other hand, the research results also lend further weight to the Brundtland Report and the Helsinki and Montreal resolutions. "The conclusion of our study is that, for example, when the number of species declines by 10 percent the wood production decreases on average by six to seven percent. And the rate of decline increases exponentially with further reduction of species richness” said Pretzsch. His team contributed a comprehensive data set of inventories and long-term experimental plots of pure and mixed stands in Central Europe.

Experimental Data over a Period of More than 150 Years

“The inventories and experimental plot data from more than 150 years demonstrate how timber growth decreases in parallel with the number of species,” Professor Pretzsch explained, “and how it can increase toward mixed stands again with the conversion of forest monocultures.” Particularly in the 1950s and 60s, Germany heavily relied on forest monocultures with only one species, such as spruce or pine, “a policy that we have consciously backed away from in the recent years. Meanwhile, the silviculture guidelines of many countries stipulate that, whenever possible, stocks should be comprised of two or three species.”

The study published in Science, which took into account the major global forest ecosystems, clearly shows that in addition to the many ecological and social benefits, mixed stands can also provide a material benefit in terms of increased productivity.

Annual Loss Estimated at around 490 Billion US Dollars

The authors have hypothetically calculated what would happen if the species continued to decline throughout the world as they have in recent years: If mixed forests continue to be cleared and converted into monocultures such as eucalyptus or pine, then productivity will steadily decrease.

With a species impoverishment of 99 percent, the approximate loss in value would be of 166 to 490 billion US dollars per year. The authors of the study note that these high losses amount to the double times the annual global expenditure for the conservation of biodiversity. Other losses caused by the reduction in biodiversity include decreases in genetic diversity, protective functions, and recovery functions, which go far beyond the reduction in timber production.

The results of the study provide the Intergovernmental Platform on Biodiversity and Ecosystem Services (UN IPBES) and the United Nations Convention on Biological Diversity (UNCBD) with an important quantitative basis for the intelligent protection and sustainable management of forests.

Publication:
Liang, J., Crowther, TW., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, EI., Salas, C., Lee, E., Lee, B., Kim, HS, Bruelheide, H, Coomes, DA, Piotto, D, Sunderland, T, Schmid, B, Gourlet-Fleury, S, Sonké, B, Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, B., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T, Bouriaud, O, Bussotti, F, Finér, L, Jaroszewicz, B, Jucker, T, Valladares, V, Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, AR, Rovero, F, Bitariho, R, Niklaus, PA, Alvarez-Loayza, P, Chamuya, N, Valencia, R, Mortier, F, Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L. and Reich, P.B.: Positive Biodiversity–Productivity Relationship Predominant in Global Forests, Science 2016. DOI: 10.1126/science.aaf8957

Video:
http://www.minuteearth.com/biodiversity

Photos in High-Resolution: https://mediatum.ub.tum.de/1328858?id=1328858

Contact:
Prof. Dr. Dr. h.c. Hans Pretzsch
Technical University of Munich
Chair of Forest Growth and Yield Science
Hans-Carl-von-Carlowitz Platz 2
85354 Freising
Tel: +49 (8161) 71-4710
Email: h.pretzsch@lrz.tum.de

Remarks:

Forest Scholars Worldwide Team Up For Biodiversity Research

The research, published on October 14th, 2016 in the journal Science, marks the first major accomplishment of the team, formally known as the Global Forest Biodiversity Initiative (GFBI). Established in 2016, GFBI is an international, interdisciplinary, and multi-stakeholder research collaborative that aims at better understanding broad-scale patterns and processes associated with the planet's four billion hectares of forested ecosystems. For details, visit http://www.GFBinitiative.org/.

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33457/

Dr. Ulrich Marsch | Technische Universität München

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>