Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest Management Yields Higher Productivity through Biodiversity

14.10.2016

Scientists have conducted the first worldwide study of biodiversity and its impact on the productivity of forests. Data from more than 770,000 observation points from 44 countries were evaluated for this purpose. The samples included in the study comprised 8,700 species of trees from mangroves to trees in tropical rainforests, Central Europe, tundras, and dry savannas to populations in Mediterranean forests. The authors conclude that a decline in the number of species leads to massive cuts in the productivity of forests, whereas monocultures converted into mixed stands can yield significantly higher levels of timber growth.

The highest levels of biodiversity in the world are found in forests, but deforestation, forest degradation, and climate change are having a serious impact on half of all tree species. Although the preservation of the tree stock and sustainable forest management have been the subject of much discussion and have been promoted through environmental measures across the globe, the general decline in species, along with its serious consequences, continues.


Experimental plots with mixed stands of Douglas fir-European beech in Bavarian lowlands.

(Photo: Leonhard Steinacker/ TUM)

The study published in the current issue of “Science” illustrates how the global decline in biodiversity is accompanied by a decline in timber growth.

“On the one hand, the study sets new standards because of its geostatistical methodology and global scope. It included an immense volume of data on biodiversity and productivity from nearly 50 countries throughout the world, which has never been done before in this field of science," said co-author Professor Hans Pretzsch, the Director of the Chair of Forest Growth and Yield Science at the Technical University of Munich (TUM).

On the other hand, the research results also lend further weight to the Brundtland Report and the Helsinki and Montreal resolutions. "The conclusion of our study is that, for example, when the number of species declines by 10 percent the wood production decreases on average by six to seven percent. And the rate of decline increases exponentially with further reduction of species richness” said Pretzsch. His team contributed a comprehensive data set of inventories and long-term experimental plots of pure and mixed stands in Central Europe.

Experimental Data over a Period of More than 150 Years

“The inventories and experimental plot data from more than 150 years demonstrate how timber growth decreases in parallel with the number of species,” Professor Pretzsch explained, “and how it can increase toward mixed stands again with the conversion of forest monocultures.” Particularly in the 1950s and 60s, Germany heavily relied on forest monocultures with only one species, such as spruce or pine, “a policy that we have consciously backed away from in the recent years. Meanwhile, the silviculture guidelines of many countries stipulate that, whenever possible, stocks should be comprised of two or three species.”

The study published in Science, which took into account the major global forest ecosystems, clearly shows that in addition to the many ecological and social benefits, mixed stands can also provide a material benefit in terms of increased productivity.

Annual Loss Estimated at around 490 Billion US Dollars

The authors have hypothetically calculated what would happen if the species continued to decline throughout the world as they have in recent years: If mixed forests continue to be cleared and converted into monocultures such as eucalyptus or pine, then productivity will steadily decrease.

With a species impoverishment of 99 percent, the approximate loss in value would be of 166 to 490 billion US dollars per year. The authors of the study note that these high losses amount to the double times the annual global expenditure for the conservation of biodiversity. Other losses caused by the reduction in biodiversity include decreases in genetic diversity, protective functions, and recovery functions, which go far beyond the reduction in timber production.

The results of the study provide the Intergovernmental Platform on Biodiversity and Ecosystem Services (UN IPBES) and the United Nations Convention on Biological Diversity (UNCBD) with an important quantitative basis for the intelligent protection and sustainable management of forests.

Publication:
Liang, J., Crowther, TW., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, EI., Salas, C., Lee, E., Lee, B., Kim, HS, Bruelheide, H, Coomes, DA, Piotto, D, Sunderland, T, Schmid, B, Gourlet-Fleury, S, Sonké, B, Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, B., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T, Bouriaud, O, Bussotti, F, Finér, L, Jaroszewicz, B, Jucker, T, Valladares, V, Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, AR, Rovero, F, Bitariho, R, Niklaus, PA, Alvarez-Loayza, P, Chamuya, N, Valencia, R, Mortier, F, Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L. and Reich, P.B.: Positive Biodiversity–Productivity Relationship Predominant in Global Forests, Science 2016. DOI: 10.1126/science.aaf8957

Video:
http://www.minuteearth.com/biodiversity

Photos in High-Resolution: https://mediatum.ub.tum.de/1328858?id=1328858

Contact:
Prof. Dr. Dr. h.c. Hans Pretzsch
Technical University of Munich
Chair of Forest Growth and Yield Science
Hans-Carl-von-Carlowitz Platz 2
85354 Freising
Tel: +49 (8161) 71-4710
Email: h.pretzsch@lrz.tum.de

Remarks:

Forest Scholars Worldwide Team Up For Biodiversity Research

The research, published on October 14th, 2016 in the journal Science, marks the first major accomplishment of the team, formally known as the Global Forest Biodiversity Initiative (GFBI). Established in 2016, GFBI is an international, interdisciplinary, and multi-stakeholder research collaborative that aims at better understanding broad-scale patterns and processes associated with the planet's four billion hectares of forested ecosystems. For details, visit http://www.GFBinitiative.org/.

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33457/

Dr. Ulrich Marsch | Technische Universität München

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>