Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For pollock surveys in Alaska, things are looking up


To help estimate fish populations, scientists experiment with seafloor-mounted sonar systems that monitor fish in the water column above

Shelikof Strait, in the Gulf of Alaska, is an important spawning area for walleye pollock, the target of the largest--and one of the most valuable--fisheries in the nation. This year, a team of NOAA Fisheries scientists went there to turn their usual view of the fishery upside-down.

The bottom-mounted sonars produce high-quality data. This image shows the abundance of pollock as viewed by the upward-looking sonar at a spawning site on March 15th, 2015. The colors in the image represent the strength of sound reflected from fish, with a strong echo from the sea surface visible at the top of the image.

Credit: NOAA

Scientists have been conducting fish surveys in the Shelikof Strait for decades. They do that in part by riding around in a ship and using sonar systems--basically, fancy fish finders--to see what's beneath them. But in February of this year, scientists moored three sonar devices to the seafloor and pointed them up toward the surface. The devices have been recording the passage of fish above them ever since.

Because underwater devices cannot transmit data in real time, the sonar systems have been storing their data internally, leaving scientists in a state of suspense since February. But suspense turned to satisfaction last week when, working in cooperation with local fishermen aboard a 90-foot chartered fishing vessel, scientists retrieved the moorings from the bottom of Shelikof Strait.

"The data looked beautiful," said Alex De Robertis, a biologist with NOAA's Alaska Fisheries Science Center, shortly after he cracked open the unit and downloaded the data.

First Attempt with a New Technology

"This was a first trial," De Robertis said. "We're still developing the technology to see how well it works."

Whether moored on the bottom or carried by a ship, the sonar systems that scientists use work the same way: they emit a ping that echoes off the fish (and anything else in the water column). Based on the strength of the echo, scientists estimate the number of fish in the water. Those estimates are used when setting sustainable catch limits.

"Usually we estimate how many fish we have by reading the acoustic echo off their backs," said De Robertis. "In this case, we'll be reading the echo from their bellies."

But unlike shipboard sonar, moored sonars are stationary, so the tricky part is choosing the right mooring locations. De Robertis, along with NOAA Fisheries colleagues Chris Wilson and Robert Levine, have analyzed 20 years of survey data to select the three locations used in this study, which they hope will prove representative of the larger Shelikof Strait area.

A Long-term Perspective

If the technology works, scientists could use it to augment traditional, ship-based surveys. In addition to using sonar, those surveys also involve catching a sample of fish with a trawl, which produces information on the age, size, and physical condition of the fish. However, those surveys offer only a snapshot of what's happening in the water during the time of the survey. In years when the fish aggregate earlier or later than usual, the ship-based surveys might miss some of the action.

The experimental sonar system, on the other hand, records over long periods--3 months long in the case of the experimental deployment in Shelikof Strait.

"This will give us a new window on what fish populations are doing over time that we wouldn't be able to get any other way," De Robertis said. Scientists will just have to get used to the fact that the window is upside down.

Media Contact

Marjorie Mooney-Seuss


Marjorie Mooney-Seuss | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>