Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding farmland: New maps offer a clearer view of global agriculture

16.01.2015

A new global cropland map combines multiple satellite data sources, reconciled using crowdsourced accuracy checks, to provide an improved record of total cropland extent as well as field size around the world.

Knowing where agricultural land is located is crucial for regional and global food security planning, and information on field size offers valuable insight into local economic conditions. Two new global maps, released today in the journal Global Change Biology, provide a significant step forward in global cropland information on these two topics.


IIASA-IFPRI Global Cropland Map (Africa)

IIASA Geo-Wiki Project; Google


IIASA Cropland Size Map

IIASA Geo-Wiki Project; Google

IIASA-IFPRI Global Cropland Map
The first map shows global cropland percentages at 1 kilometer resolution for the year 2005. It was developed by the International Institute for Applied Systems Analysis (IIASA) and the International Food Policy Research Institute (IFPRI) using a hybridization of multiple data sources contributed by many other institutes and organizations, combined with crowdsourcing validation data where volunteers used high-resolution data to check the accuracy of larger-scale maps.

“Current sources of information on cropland extent are not accurate enough for most applications,” says IIASA researcher Steffen Fritz, who led the project. “The global cropland map is a low cost solution to fill this need.”

IIASA researcher and co-author Linda See adds, “Our hybrid approach combines existing maps to produce a better integrated product than any of the individual global base maps currently available.”

The new global cropland map is more accurate, by virtue of increased agreement between different datasets on cropland cover. The researchers used a likelihood method to quantify the level of uncertainty, using agreement between maps to assign a likelihood to each area. See explains, “Where all maps agree there is cropland, there is a higher likelihood that cropland is present.” The map improves an earlier hybrid map first released in 2011 by IIASA.

“Getting an accurate crop map is particularly difficult in developing countries, where smallholder plots are tough to differentiate from the surrounding vegetation,” said Liangzhi You, a senior research fellow at IFPRI. “Yet cropland information is fundamental to both policymakers and donors so that they can better target their agricultural and rural development policies and investments.”

Global Field Size Map
The study also presents the first ever global field size map—an important proxy for mechanization and human development. This map was based entirely on crowdsourced data collected through IIASA’s Geo-Wiki project, a crowdsourcing initiative that relies on a global network of citizen scientists, who have looked at thousands of high-resolution images of land cover to determine whether cropland was present or not.

See says, “The field size map is really unique—no such global product currently exists.”

The researchers say that the new maps show the power of crowdsourcing for massive data analysis projects. Last year, Fritz won a Consolidator Grant from the European Research Council to continue and expand this work. He and colleagues are now working to expand the field size mapping activities in collaboration with Sokoine University of Agriculture in Tanzania.

Fritz says, “Crowdsourcing has incredible potential for gathering this type of information, and it could be particularly valuable in Africa, where future food security is a major uncertainty.”

Reference
Fritz et. al. 2015. Mapping global cropland and field size. Global Change Biology. Advance Copy Available Upon Request

Maps are available on www.geo-wiki.org

Contacts

Steffen Fritz
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 353
fritz@iiasa.ac.at

Linda See
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 423
see@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

Weitere Informationen:

http://www.geo-wiki.org

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>