Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding farmland: New maps offer a clearer view of global agriculture

16.01.2015

A new global cropland map combines multiple satellite data sources, reconciled using crowdsourced accuracy checks, to provide an improved record of total cropland extent as well as field size around the world.

Knowing where agricultural land is located is crucial for regional and global food security planning, and information on field size offers valuable insight into local economic conditions. Two new global maps, released today in the journal Global Change Biology, provide a significant step forward in global cropland information on these two topics.


IIASA-IFPRI Global Cropland Map (Africa)

IIASA Geo-Wiki Project; Google


IIASA Cropland Size Map

IIASA Geo-Wiki Project; Google

IIASA-IFPRI Global Cropland Map
The first map shows global cropland percentages at 1 kilometer resolution for the year 2005. It was developed by the International Institute for Applied Systems Analysis (IIASA) and the International Food Policy Research Institute (IFPRI) using a hybridization of multiple data sources contributed by many other institutes and organizations, combined with crowdsourcing validation data where volunteers used high-resolution data to check the accuracy of larger-scale maps.

“Current sources of information on cropland extent are not accurate enough for most applications,” says IIASA researcher Steffen Fritz, who led the project. “The global cropland map is a low cost solution to fill this need.”

IIASA researcher and co-author Linda See adds, “Our hybrid approach combines existing maps to produce a better integrated product than any of the individual global base maps currently available.”

The new global cropland map is more accurate, by virtue of increased agreement between different datasets on cropland cover. The researchers used a likelihood method to quantify the level of uncertainty, using agreement between maps to assign a likelihood to each area. See explains, “Where all maps agree there is cropland, there is a higher likelihood that cropland is present.” The map improves an earlier hybrid map first released in 2011 by IIASA.

“Getting an accurate crop map is particularly difficult in developing countries, where smallholder plots are tough to differentiate from the surrounding vegetation,” said Liangzhi You, a senior research fellow at IFPRI. “Yet cropland information is fundamental to both policymakers and donors so that they can better target their agricultural and rural development policies and investments.”

Global Field Size Map
The study also presents the first ever global field size map—an important proxy for mechanization and human development. This map was based entirely on crowdsourced data collected through IIASA’s Geo-Wiki project, a crowdsourcing initiative that relies on a global network of citizen scientists, who have looked at thousands of high-resolution images of land cover to determine whether cropland was present or not.

See says, “The field size map is really unique—no such global product currently exists.”

The researchers say that the new maps show the power of crowdsourcing for massive data analysis projects. Last year, Fritz won a Consolidator Grant from the European Research Council to continue and expand this work. He and colleagues are now working to expand the field size mapping activities in collaboration with Sokoine University of Agriculture in Tanzania.

Fritz says, “Crowdsourcing has incredible potential for gathering this type of information, and it could be particularly valuable in Africa, where future food security is a major uncertainty.”

Reference
Fritz et. al. 2015. Mapping global cropland and field size. Global Change Biology. Advance Copy Available Upon Request

Maps are available on www.geo-wiki.org

Contacts

Steffen Fritz
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 353
fritz@iiasa.ac.at

Linda See
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 423
see@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

Weitere Informationen:

http://www.geo-wiki.org

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>