Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding farmland: New maps offer a clearer view of global agriculture

16.01.2015

A new global cropland map combines multiple satellite data sources, reconciled using crowdsourced accuracy checks, to provide an improved record of total cropland extent as well as field size around the world.

Knowing where agricultural land is located is crucial for regional and global food security planning, and information on field size offers valuable insight into local economic conditions. Two new global maps, released today in the journal Global Change Biology, provide a significant step forward in global cropland information on these two topics.


IIASA-IFPRI Global Cropland Map (Africa)

IIASA Geo-Wiki Project; Google


IIASA Cropland Size Map

IIASA Geo-Wiki Project; Google

IIASA-IFPRI Global Cropland Map
The first map shows global cropland percentages at 1 kilometer resolution for the year 2005. It was developed by the International Institute for Applied Systems Analysis (IIASA) and the International Food Policy Research Institute (IFPRI) using a hybridization of multiple data sources contributed by many other institutes and organizations, combined with crowdsourcing validation data where volunteers used high-resolution data to check the accuracy of larger-scale maps.

“Current sources of information on cropland extent are not accurate enough for most applications,” says IIASA researcher Steffen Fritz, who led the project. “The global cropland map is a low cost solution to fill this need.”

IIASA researcher and co-author Linda See adds, “Our hybrid approach combines existing maps to produce a better integrated product than any of the individual global base maps currently available.”

The new global cropland map is more accurate, by virtue of increased agreement between different datasets on cropland cover. The researchers used a likelihood method to quantify the level of uncertainty, using agreement between maps to assign a likelihood to each area. See explains, “Where all maps agree there is cropland, there is a higher likelihood that cropland is present.” The map improves an earlier hybrid map first released in 2011 by IIASA.

“Getting an accurate crop map is particularly difficult in developing countries, where smallholder plots are tough to differentiate from the surrounding vegetation,” said Liangzhi You, a senior research fellow at IFPRI. “Yet cropland information is fundamental to both policymakers and donors so that they can better target their agricultural and rural development policies and investments.”

Global Field Size Map
The study also presents the first ever global field size map—an important proxy for mechanization and human development. This map was based entirely on crowdsourced data collected through IIASA’s Geo-Wiki project, a crowdsourcing initiative that relies on a global network of citizen scientists, who have looked at thousands of high-resolution images of land cover to determine whether cropland was present or not.

See says, “The field size map is really unique—no such global product currently exists.”

The researchers say that the new maps show the power of crowdsourcing for massive data analysis projects. Last year, Fritz won a Consolidator Grant from the European Research Council to continue and expand this work. He and colleagues are now working to expand the field size mapping activities in collaboration with Sokoine University of Agriculture in Tanzania.

Fritz says, “Crowdsourcing has incredible potential for gathering this type of information, and it could be particularly valuable in Africa, where future food security is a major uncertainty.”

Reference
Fritz et. al. 2015. Mapping global cropland and field size. Global Change Biology. Advance Copy Available Upon Request

Maps are available on www.geo-wiki.org

Contacts

Steffen Fritz
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 353
fritz@iiasa.ac.at

Linda See
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 423
see@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

Weitere Informationen:

http://www.geo-wiki.org

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>