Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting a destructive crop disease with mathematics

21.06.2017

An international team of researchers has used mathematical modelling to understand new ways of combating maize lethal necrosis, an emerging disease that poses a serious threat to food security in sub-Saharan Africa.

Maize lethal necrosis (MLN) arises from the interaction of two viruses: maize chlorotic mottle virus (MSMV) and a virus from a group named potyviruses, often sugarcane mosaic virus (SCMV). But traditional modelling has focused on understanding just one virus at a time. By modelling the spread of these two co-infecting viruses together, within and between growing seasons, the team has shed new light on the disease that will help farmers to manage it effectively.


This is a maize field in Kenya.

Credit: Nik Cunniffe

The study, published this week in the journal Phytopathology, demonstrates that a combination of crop rotation, using virus-free 'clean seed', roguing (removing plants showing disease symptoms) and controlling insect pests is the best way to control MLN. It also highlighted differences in the ability of large and small growers to prevent loss of their maize crop.

"Larger growers have more money for insecticides and buying clean seed, both of which can greatly reduce disease levels. Crop rotation - an important component of control for smaller growers - disrupts transmission from season to season, but it requires coordination between farmers to ensure the virus doesn't build up in surrounding fields. Unless significant investment is made in farmer training, this unfortunately remains more realistic for larger farmers, who tend to be better organized and to have larger growing areas," said Dr Nik Cunniffe, an expert in mathematical biology based in Cambridge's Department of Plant Sciences, who contributed to the work.

... more about:
»crop »crop disease »farmer »maize »viruses

Modelling the effects of two viruses infecting the same plant is rarely done, despite this happening frequently in the real world. The approach is highly relevant for other regions of the world where Maize Lethal Necrosis is an emerging threat to maize production, such as South East Asia and South America. It could also inform the management and control of other destructive plant diseases caused by combinations of pathogens, such as sweet potato virus disease in Africa and rice tungro disease in Asia.

"We've developed a new framework to model co-infecting viruses, such as those causing Maize Lethal Necrosis, even when there's not very much biological information available. When two viruses infect a plant they can interact with each other to cause much worse symptoms and greater losses of yield. If you're a subsistence farmer relying on income from the maize you're growing, infection of the crop with MLN can be devastating," Cunniffe said.

Maize is one of sub-Saharan Africa's staple food crops, and MLN has been spreading in Kenya for the last six years, causing devastating harvest losses of up to 90% in heavily affected regions. This affects not only direct availability of food, but also local income and employment. The study focused on Maize Lethal Necrosis disease in Kenya, where crop losses are particularly high, although the disease has spread to other countries in Africa. Infected corn plants die prematurely or are frequently barren, drastically reducing the yield. Most of the nation's maize supply comes from small to medium-size farms, which are less able to withstand threats to their food production than large resource-rich farms.

With the global population estimated to reach nine billion people by 2050, producing enough food will be one of this century's greatest challenges. Cunniffe is a member of the Cambridge Global Food Security Initiative at Cambridge, which is involved in addressing the issues surrounding food security at local, national and international scales. The Initiative recognises that expertise from many disciplines is required to develop effective solutions.

The research arose from the NIMBioS Working Group on Multiscale Vectored Plant Viruses, which included mathematicians, ecologists, plant pathologists, and evolutionary biologists who met over several years to develop novel mathematical methods for the study of plant pathology. It was funded by the National Institute for Mathematical and Biological Synthesis.

Media Contact

Nik Cunniffe
njc1001@cam.ac.uk
44-122-333-3954

 @Cambridge_Uni

http://www.cam.ac.uk 

Nik Cunniffe | EurekAlert!

Further reports about: crop crop disease farmer maize viruses

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Transfer technique produces wearable gallium nitride gas sensors

10.11.2017 | Power and Electrical Engineering

NASA CubeSat to test miniaturized weather satellite technology

10.11.2017 | Information Technology

Research shows ice sheets as large as Greenland's melted fast in a warming climate

10.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>