Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extracting bioactive compounds from marine microalgae

29.12.2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tropical Agricultural Science, researchers evaluated various methods for extracting fatty acids and carotenoids from two microalgae species.

Microalgae are photosynthetic microorganisms that produce high value compounds considered essential for human health, including polyunsatured fatty acids (e.g., omega-3s like EPA and DHA), various pigments (chlorophyll and carotenoids), and vitamins. Although fish have traditionally been our principal dietary source of EPA and DHA, declining marine fish stocks, the unpleasant odour of fish oil, and other disadvantages, have prompted a search for alternative sources of these nutrients.


Fish oil has high levels of omega-3s but with declining fish stocks, it is imperative to find alternative sources

Copyright : Wikimedia


Nannochloropsis sp. microalgae viewed under a light microscope.

Copyright : Photo taken at Wageningen University by Inks002 / Wikimedia Commons

In a study, published in the Pertanika Journal of Tropical Agricultural Science, S. P. Loh and S. Lee of the Universiti Putra Malaysia evaluated various methods for extracting fatty acids and carotenoids from two microalgae species: Chaetoceros gracillis, a diatom, and Nannochloropsis occulata, a unicellular green alga. Both species play an important role in the food chain, while N. occulata is also widely cultivated for fish hatcheries and shrimp farms.

No standard extraction methods currently exist for determining the fatty acid or carotenoid content of microalgae. Therefore, the researchers selected different extraction methods based on these criteria: maximum extraction efficiency, ease of handling, and use of solvents of low toxicity.

Overall, the study found that high amounts of fatty acids and carotenoids could be obtained from both microalgae. However, for both fatty acid and carotenoid extration, one extraction method was superior in N. occulata while another method yielded the best results in C. gracillis.

The researchers also found that N. occulata had higher amounts of the omega-3 fatty acid EPA, while C. gracillis was particularly high in palmitic acid and palmitoleic acid levels. In addition, there were significantly higher carotenoid levels in N. occulata compared to C. gracillis.

For more information about this research, please contact:
S. P. Loh
Department of Nutrition and Dietetics
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
3400 Serdang, Selangor, Malaysia
Email: sploh@upm.edu.my
Tel: +(603) 8947 2432; Mobile: +(6012) 391 2654.

About Pertanika Journal of Tropical Agricultural Science (JTAS)
Pertanika Journal of Tropical Agricultural Science (JTAS) is published by Universiti Putra Malaysia in English and is open to authors around the world regardless of nationality. The journal is published four times a year in February, May, August and November. Other Pertanika series include Pertanika Journal of Science & Technology (JST), and Pertanika Journal of Social Sciences & Humanities (JSSH).

JTAS aims to provide a forum for high quality research related to tropical agricultural research. Areas relevant to the scope of the journal include: agricultural biotechnology, biochemistry, biology, ecology, fisheries, forestry, food sciences, entomology, genetics, microbiology, pathology and management, physiology, plant and animal sciences, production of plants and animals of economic importance, and veterinary medicine. The journal publishes original academic articles dealing with research on issues of worldwide relevance.


For more information about the journal, contact:

The Chief Executive Editor (UPM Journals)
Head, Journal Division, UPM Press
Office of the Deputy Vice Chancellor (R&I)
IDEA Tower 2, UPM-MDTC Technology Centre
Universiti Putra Malaysia
43400 Serdang, Selangor
Malaysia.
Phone: +(603) 8947 1622 | +(6016) 217 4050
Email: nayan@upm.my

Acknowledgements
The Chief Executive Editor, UPM Journals

Associated links
Link to research paper
Pertanika Journals

Dr Nayan KANWAL, FRSA, ABIM, AMIS, Ph.D. | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>