Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ever tried a 'laser delicious' apple?

04.12.2014

Researchers in Lebanon and France develop laser biospeckle method to help farmers harvest climacteric fruits -- like apples, bananas, pears and tomatoes -- at their precise peak in ripeness

The ability to detect when to harvest "climacteric" fruits -- such as apples, bananas, pears and tomatoes -- at the precise moment to ensure "peak edibleness" in terms of both taste and texture may soon be within reach for farmers, thanks to the work of a team of researchers from Saint Joseph University in Lebanon and the Université de Bretagne Occidentale de Brest in France.


The team's setup to measure speckle patterns involves coherent light, a laser beam, polarizers and quarter-wave plates to generate different incident polarizations, and a CMOS or CCD camera to record the fruits' speckle pattern.

Credit: R.Nassif


This is the speckle pattern recorded when illuminating an apple.

Credit: R.Nassif

As the team reports in a paper published in The Optical Society's (OSA) journal Applied Optics, they recently demonstrated a laser biospeckle technique capable of detecting fruits' climacteric peak.

What's the significance of this climacteric peak? "Fruits are divided into two categories: climacteric or nonclimacteric fruits," explained Rana Nassif, a postdoctoral researcher affiliated with both Saint Joseph University and the Université de Bretagne Occidentale de Brest. "Climacteric fruits continue their maturation off the tree or vine, so these fruits emit ethylene and are characterized by a climacteric peak--indicating a maximum ethylene release.

"This peak signals that the fruit has reached its maturity." After this point, the fruit is more susceptible to fungal invasion or begins to degrade from cell death.

By tapping biospeckle activity, generated by illuminating a biological medium with coherent light, the researchers studied the evolution of two batches of Golden apples' speckle patterns as they underwent the ripening process in both low- and room-temperature environments.

To do this, the team uses a rather simple setup that involves coherent light, a laser beam, polarizers and quarter-wave plates to generate different incident polarizations, and a digital camera to record the speckle pattern. "Simplicity and low cost are the key advantages of our technique," noted Nassif.

How does it work? Laser light interacts with any medium through different processes such as scattering, absorption and reflection. Photons scattered by the medium interfere with the incident light field to create a speckle pattern. "A group of sparkling and dark grains called 'speckle grains' make up this pattern. If the medium is biological -- meaning that it presents some sort of cell activity -- its speckle pattern will show changes with time," she said. "And this pattern depends on the medium's scattering properties, as well as its own nature."

Once obtained, speckle patterns can be correlated with a reference standard, which is based on emitted ethylene concentrations obtained by a principal component analysis. "This approach allows us to validate biospeckle as a noninvasive alternative method to respiration rate and ethylene production, which are used today for climacteric peak detection and as a ripening index," said Nassif.

The team explored the diffusion properties and inner activity aspects of the apples via speckle grain size, recording the temporal correlation between a set of images, consecutively, in different light polarizations. "On one hand, the changes the speckle grain size underwent marked an inflection point corresponding to the climacteric peak for apples stored at room temperature. While on the other hand, the time correlation coefficient behavior demonstrated a rise in the apples' activity until the day of climacteric peak was reached, followed by a decrease that marked the beginning of the deterioration stage."

Beyond apples, Nassif and colleagues are also monitoring the ripening of "Conference" pears -- performing backscattered speckle images on the fruits during the ripening phase. They supplemented these images with fluorescence and biochemical measurements.

"By doing this, we were able to show that as the glucose content increases, the circular degree of polarization decreases," Nassif said. In technical terms, she added, "This signature is expected for a medium that constituted a significant portion of small 'scatterers,' in which the Rayleigh diffusion regime outweighs the Mie regime. We also noticed a decreasing speckle grain size, which can be attributed either to increasing glucose or the decreasing of absorption."

What's next for the team? "In the near term, we're working on speckle theoretical studies based on Monte Carlo simulations -- taking into account light polarization and media characteristics," said Nassif. "These simulations can be used to differentiate and quantify the diffusion coefficient variations and its effect from those of absorption on the fruits' speckle image."

Then, they'll focus on comparing these simulations with experiments done on latex spheres -- a mix of spheres of varying diameters -- to vary the diffusion and absorption coefficient.

And, of course, one of the team's ultimate goals is to develop a portable tool to enable farmers to noninvasively assess their fruits' maturity in orchards or fields to detect the optimal time to harvest their crops. "This is of great interest to fruit farmers--especially since most tests used today are either destructive or based on visual criteria that are often wrong," noted Nassif.

Paper: "Detection of Golden apples climacteric peak by laser biospeckle measurements," by R. Nassif et al., Applied Optics, Vol. 53, Issue 35, pp. 8276-8282(2014).

http://www.opticsinfobase.org/ao/viewmedia.cfm?uri=ao-53-35-8276&html=true

About Applied Optics

Applied Optics publishes articles emphasizing applications-centered research in optics, moving the potential of science and technology to the practical. Published three times each month, Applied Optics reports significant optics applications from optical testing and instrumentation to medical optics...from holography to optical neural networks...from lidar and remote sensing to laser materials processing. Each issue contains content from three divisions of editorial scope: Optical Technology; Information Processing; and Lasers, Photonics, and Environmental Optics. It is edited by Joseph Mait of the U.S. Army Research Laboratory. For more information, visit http://www.OpticsInfoBase.org/AO

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. OSA is a founding partner of the National Photonics Initiative and the 2015 International Year of Light. For more information, visit http://www.osa.org 

Jason Socrates Bardi | EurekAlert!

Further reports about: OSA Optical coefficient ethylene fruits optics polarization ripening

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>