Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ever tried a 'laser delicious' apple?

04.12.2014

Researchers in Lebanon and France develop laser biospeckle method to help farmers harvest climacteric fruits -- like apples, bananas, pears and tomatoes -- at their precise peak in ripeness

The ability to detect when to harvest "climacteric" fruits -- such as apples, bananas, pears and tomatoes -- at the precise moment to ensure "peak edibleness" in terms of both taste and texture may soon be within reach for farmers, thanks to the work of a team of researchers from Saint Joseph University in Lebanon and the Université de Bretagne Occidentale de Brest in France.


The team's setup to measure speckle patterns involves coherent light, a laser beam, polarizers and quarter-wave plates to generate different incident polarizations, and a CMOS or CCD camera to record the fruits' speckle pattern.

Credit: R.Nassif


This is the speckle pattern recorded when illuminating an apple.

Credit: R.Nassif

As the team reports in a paper published in The Optical Society's (OSA) journal Applied Optics, they recently demonstrated a laser biospeckle technique capable of detecting fruits' climacteric peak.

What's the significance of this climacteric peak? "Fruits are divided into two categories: climacteric or nonclimacteric fruits," explained Rana Nassif, a postdoctoral researcher affiliated with both Saint Joseph University and the Université de Bretagne Occidentale de Brest. "Climacteric fruits continue their maturation off the tree or vine, so these fruits emit ethylene and are characterized by a climacteric peak--indicating a maximum ethylene release.

"This peak signals that the fruit has reached its maturity." After this point, the fruit is more susceptible to fungal invasion or begins to degrade from cell death.

By tapping biospeckle activity, generated by illuminating a biological medium with coherent light, the researchers studied the evolution of two batches of Golden apples' speckle patterns as they underwent the ripening process in both low- and room-temperature environments.

To do this, the team uses a rather simple setup that involves coherent light, a laser beam, polarizers and quarter-wave plates to generate different incident polarizations, and a digital camera to record the speckle pattern. "Simplicity and low cost are the key advantages of our technique," noted Nassif.

How does it work? Laser light interacts with any medium through different processes such as scattering, absorption and reflection. Photons scattered by the medium interfere with the incident light field to create a speckle pattern. "A group of sparkling and dark grains called 'speckle grains' make up this pattern. If the medium is biological -- meaning that it presents some sort of cell activity -- its speckle pattern will show changes with time," she said. "And this pattern depends on the medium's scattering properties, as well as its own nature."

Once obtained, speckle patterns can be correlated with a reference standard, which is based on emitted ethylene concentrations obtained by a principal component analysis. "This approach allows us to validate biospeckle as a noninvasive alternative method to respiration rate and ethylene production, which are used today for climacteric peak detection and as a ripening index," said Nassif.

The team explored the diffusion properties and inner activity aspects of the apples via speckle grain size, recording the temporal correlation between a set of images, consecutively, in different light polarizations. "On one hand, the changes the speckle grain size underwent marked an inflection point corresponding to the climacteric peak for apples stored at room temperature. While on the other hand, the time correlation coefficient behavior demonstrated a rise in the apples' activity until the day of climacteric peak was reached, followed by a decrease that marked the beginning of the deterioration stage."

Beyond apples, Nassif and colleagues are also monitoring the ripening of "Conference" pears -- performing backscattered speckle images on the fruits during the ripening phase. They supplemented these images with fluorescence and biochemical measurements.

"By doing this, we were able to show that as the glucose content increases, the circular degree of polarization decreases," Nassif said. In technical terms, she added, "This signature is expected for a medium that constituted a significant portion of small 'scatterers,' in which the Rayleigh diffusion regime outweighs the Mie regime. We also noticed a decreasing speckle grain size, which can be attributed either to increasing glucose or the decreasing of absorption."

What's next for the team? "In the near term, we're working on speckle theoretical studies based on Monte Carlo simulations -- taking into account light polarization and media characteristics," said Nassif. "These simulations can be used to differentiate and quantify the diffusion coefficient variations and its effect from those of absorption on the fruits' speckle image."

Then, they'll focus on comparing these simulations with experiments done on latex spheres -- a mix of spheres of varying diameters -- to vary the diffusion and absorption coefficient.

And, of course, one of the team's ultimate goals is to develop a portable tool to enable farmers to noninvasively assess their fruits' maturity in orchards or fields to detect the optimal time to harvest their crops. "This is of great interest to fruit farmers--especially since most tests used today are either destructive or based on visual criteria that are often wrong," noted Nassif.

Paper: "Detection of Golden apples climacteric peak by laser biospeckle measurements," by R. Nassif et al., Applied Optics, Vol. 53, Issue 35, pp. 8276-8282(2014).

http://www.opticsinfobase.org/ao/viewmedia.cfm?uri=ao-53-35-8276&html=true

About Applied Optics

Applied Optics publishes articles emphasizing applications-centered research in optics, moving the potential of science and technology to the practical. Published three times each month, Applied Optics reports significant optics applications from optical testing and instrumentation to medical optics...from holography to optical neural networks...from lidar and remote sensing to laser materials processing. Each issue contains content from three divisions of editorial scope: Optical Technology; Information Processing; and Lasers, Photonics, and Environmental Optics. It is edited by Joseph Mait of the U.S. Army Research Laboratory. For more information, visit http://www.OpticsInfoBase.org/AO

About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. OSA is a founding partner of the National Photonics Initiative and the 2015 International Year of Light. For more information, visit http://www.osa.org 

Jason Socrates Bardi | EurekAlert!

Further reports about: OSA Optical coefficient ethylene fruits optics polarization ripening

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>