Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ecological intensification of agriculture


Putting a halt to the profound changes affecting agricultural landscapes: With this goal in mind, scientists, farmers and official representatives teamed up to look into ecological intensification as a potential solution.

Agricultural landscapes in Germany have lost much of their diversity being dominated by crops such as maize and rapeseed today. This trend has also had an impact on the biodiversity of animals and wild plants and the consequences of excessive pesticide and fertiliser use are beginning to show as bees are dying and excess nitrate concentrations are threatening groundwater and drinking water.

Wild bees and honeybees perform valuable pollination work in agricultural landscapes. In ecological intensification, flower strips and semi-natural habitats promote pollinators

(Photo: Giovanni Tamburini)

Larva of chrysopidae with its prey, a potato aphid; biological pest control using natural predators boosts yields and benefits additionally from reduced tillage and landscapes of structural diversity

(Photo: Matthias Tschumi)

Experts from science and agriculture are calling for an end to such practices. "Research has shown that the agricultural landscapes are still transforming unchecked," says ecological scientist Sarah Redlich from the Biocenter of the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany. This has a detrimental impact on the environment, yields and the sustainability of farming.

Creating high-yield and sustainable agricultural ecosystems

Scientists believe that this negative trend can be reversed through the concept of ecological intensification. The underlying idea is to integrate ecological processes such as pollination and predator/prey systems into agricultural practices and manage them selectively. They are confident that this will help reduce the use of insecticides and fertilisers. Ideally, this approach should lead to the creation of agricultural ecosystems that provide high yields while being sustainable and satisfying society's standards in terms of environmental protection, aesthetics and the production of healthy foods.

What does ecological intensification look like in practice? The concept is based on hedges, field strips with flowering plants, crop variety and special cultivation methods that eliminate soil-turning tillage, for example. Taken together, these measures promote biodiversity, support pollination and fight pests by using their natural enemies. These assumptions are backed by the results of the LIBERATION research project headed by Professor Ingolf Steffan-Dewenter and located at the Chair of Animal Ecology and Tropical Biology in the JMU’s Biocenter.

The European Union funds the project with three million euros of which 350,000 euros are allocated to the research activities at the University of Würzburg. Building on two predecessor projects, the venture also breaks new ground. In addition to laying the scientific foundation of ecological intensification, the project prioritises the communication of the research results to the public.

PhD students engage with agricultural experts

Passing on knowledge, getting feedback, strengthening cooperation and defining joint targets – Sarah Redlich and her colleague, agricultural scientist Audrey St-Martin from the Chair of Animal Ecology and Tropical Biology, devised this agenda to hold a series of events related to the topic "Integrating ecological processes in conventional agriculture – an opportunity or contradiction?"

The two PhD students accompanied by other Chair experts participated for example in the agricultural exhibition organised by the German Agricultural Society in Mariaburghausen in the Haßberge rural district. Moreover, they gave lectures and organised two workshops at an agricultural farm in Güntersleben (rural district of Würzburg).

The events were met with much interest. "During the three-day agricultural exhibition alone, around 2,000 of the 22,000 visitors visited our stand and about 200 of them stayed longer to learn more about research results or get information about the workshops," Redlich says.

The audience was varied including representatives of the Lower Franconian government, of the landscape conservation association, of the Departments for Food, Agriculture and Forestry and of the Bavarian farmers' associations plus agricultural vocational teachers and, of course, farmers.

Need for flagship farms and red tape reduction

One thing became clear very quickly: There is huge need for action and the will to change things together to implement more sustainable and ecological agricultural practices. To achieve this goal, continuous cooperation between the university, farmers and governmental authorities is required. "We also need flagship farms. They can be incentives to adopt measures in one's own business," a farmer association representative comments.

At the same time, red tape needs to be cut because it frequently curbs the enthusiasm of many farmers in its early stages. The PhD students exemplify the problem: A lot of farmers who had planted flower strips as part of the Bavarian cultural landscapes programme (KULAP) would probably no longer do so under the new KULAP programme. This is because the application process has become more complex and they are facing even more bureaucracy. "Among others, farmers are now required to map the flower strips accurately. This is a very time-consuming task and involves the risk that minor charting errors are sanctioned because of incorrect data or too large areas," Redlich explains.

Hands-on experts involved

Chair head Professor Ingolf Steffan-Dewenter and the two scientists agree that "the events were a huge success". They attribute this success also to two persons they took on board already during the planning stage: Werner Kuhn, a farmer who hosted the workshops on his company premises in Güntersleben and who is the co-founder of the "Lebensraum Feldflur" network and Anne Wischermann from the Department of Food, Agriculture and Forestry in Karlstadt who is a wildlife habitat consultant responsible for the preservation, improvement and creation of habitats for wild animals.

These two experts see ecological intensification from a different, non-scientific viewpoint. "Without them, this part of the project would not have been as successful as it has been," the Würzburg PhD students emphasise. Together, they managed to shed light on all aspects of the problem, namely the scientific, agricultural and legislative side. At the same time, they provided valuable input to promote more sustainable farming practices.


Sarah Redlich, Chair of Animal Ecology and Tropical Biology, Biocenter of the University of Würzburg, Phone +49 931 31-82129,

Weitere Informationen: Facts about the LIBERATION EU project To the website of the Chair of Animal Ecology and Tropical Biology at the University of Würzburg's Biocenter

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>