Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defying the koi herpes virus

01.03.2018

Whether grilled, spicy with bell peppers or breaded in flour and fried floating in oil – the carp is one of the most popular edible fish. A dreaded threat to the up to 15 kilos fried fish: the koi herpes virus (KHV). It can be dormant in the carp for months before the most deadly KHV infection erupts – enough time to infect numerous other farmed fish. Together with three other partners, Fraunhofer researchers have now developed a process that will help diagnose the virus more reliably and accurately.

Around half of all fish today come from aquaculture, since the overfishing of the oceans has caused this market to grow steadily. For fishery yield, the health of the fish is crucial.


With the help of the improved diagnostics, infected animals can be reliably identified and separated from healthy ones.

After the trout, the carp is the most important aquaculture fish in Germany. Large carp farms can be found in the Saxon Upper Lusatia area, although Franconia and the Upper Palatinate are also considered traditional carp regions with numerous smaller farms. For years, breeders across Germany have been fighting against the koi herpes virus that is continuing to spread and causing the notifiable KHV infection. During an outbreak of the disease in Saxony from 2003 to 2005, nearly all the animals died in some fish farms; 28 tons of carp were lost.

Improved diagnostics using cell cultures

"The KHV infection cannot be treated, so it is important to prevent it as far as possible. Together with our project partners, we have developed improved diagnostics with which infected animals can be identified reliably. The more quickly the sick carp are separated, the greater the chance is of protecting the other fish from KHV," says Dr. Sebastian Rakers, who heads the working group Aquatic Cell Technology and Aquaculture at the Fraunhofer Research Institution for Marine Biotechnology and Cell Technology EMB in Lübeck, Germany.

Previously, the koi herpes virus had been detected by PCR tests that made the pathogen DNA visible in a tissue sample. "If not enough virus DNA is present in the sample, though, you get false negative results with PCR."

Another significant disadvantage of the PCR tests: they do not allow a conclusion to be reached about how infectious the virus is, since the genomic evidence does not necessarily correspond with the detection of reproducible virus.

"With our improved and somewhat newly developed methods using cell cultures, we can determine how many virus particles are present per cell – therefore, also how strongly the virus is replicated in the cells." As a result, the cell cultures serve not only as an additional diagnostic tool, but also to understand the virus more thoroughly.

Vaccine development is well on its way

Rakers and his team have managed to grow cell cultures that can replicate significantly more viruses per cell than can traditional cultures. "So far, the best possible titer, which is the number of infectious viruses per milliliter that is needed to kill half of the cells, was 106. We have been able to increase the virus titer to 108, and through further optimization measures, we hope to reach a titer of 1010."

This is not only important for improved diagnostics; it is also a prerequisite for the development of a highly-effective vaccine against KHV. "Our project partners from the Friedrich Loeffler Institute (FLI), the Chair of Bioprocess Engineering at the Friedrich Alexander University of Erlangen-Nuremberg and the University of Veterinary Medicine Hanover are working intensively on vaccine development and have already been able to significantly reduce mortality in the Asian KHV line."

The joint project "KHV-Vacc" is funded by the German Federal Ministry of Nutrition and Agriculture (BMEL), due to a decision of the German Bundestag concerning the Federal Institute for Agriculture and Food (BLE), Project Number 2815HS011.

Weitere Informationen:

https://www.fraunhofer.de/en/press/research-news/2018/March/defying-the-koi-herp...

Dr. Sandra Schumann | Fraunhofer Forschung Kompakt

Further reports about: Biotechnology Defying EMB Marine PCR aquaculture cell cultures herpes virus viruses

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>