Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology professor uses microphones to track pollinating bees in new study

08.06.2017

New method has potential applications in agriculture

Tracking pollinating bees is a huge business in the world of agriculture. It's estimated that farms in the United States pay more than $656 million dollars each year to rent more than 80 billion bees, which are set loose in almond fields and other crops to pollinate the plants. Keeping track of those bees can be expensive, and being alerted to when their pollinator services are lacking can help save a lot of money.


Some of the bumblebees that were captured through audio recording during the study. A computer analysis of the buzzing sounds not only accurately tracked the bees, but also could distinguish between bees that were flying nearby and those that were in the act of pollinating.

Courtesy: Nicole Miller-Struttmann

Webster University Biology Professor Nicole Miller-Struttmann believes she has a solution that could help lower those costs and head-off pollination deficits by keeping track of all those bees. In a paper published today in PLOS ONE, a scientific journal, Miller-Struttmann and her colleagues tracked the activity of bumble bees using microphones strategically placed in Colorado meadows and reported great success in being able to predict the bee activity and pollination services.

"Tracking these dynamic populations is costly, and the current methods used to track them are time consuming and often lethal," Miller-Struttmann said. "We used inexpensive sound equipment to monitor for buzzing sounds created by bees as they fly. We then developed a computer algorithm that rapidly identifies and quantifies bee flight activity. We believe that our method could be a much more cost and time efficient method for monitoring bee activity."

Using microphones and iPad minis, the professors recorded bees in three different alpine meadows on Pennsylvania Mountain in Colorado. At the same time, they visually recorded the number bees foraging in the area. The computer algorithm was used to extrapolated how many "buzzing" sounds that matched the frequency range of bumble bees were recorded. They compared the two counts to gauge accuracy. The acoustic counts were remarkably accurate and highly correlated with the visual counts.

In phase two, the researchers tested to see if the amount of buzzing caught by the microphones accurately predicted if the bees were pollinating plants in an area or just flying near the microphones. The researchers set up two sets of plants that bees pollinated, but made it so one set could only attract bees but could not be pollinated. Using the recorded sound from each set of plants, their system successfully predicted which flowers would set fruit and which did not, indicating that the method could be used to track bee activity and also detect the services bees provide to the plants they visit.

"We believe that this could potentially be a more cost-effective method of monitoring bees while also providing real-time data to conservation managers and farmers," Miller-Struttmann said. "The technology for acoustic data collection and processing is nimble, low cost, and suited to remote locations."

###

The study was published Thursday in PLOS ONE, volume 12, issue 6, and can be found online at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179273.

With its home campus in St. Louis, Missouri, USA, Webster University comprises an action-oriented global network of faculty, staff, students and alumni who forge powerful bonds with each other and with their communities around the globe. Founded in 1915, Webster is a private non-profit university with nearly 16,000 students studying at campus locations in North America, Europe, Asia and Africa and in a robust learning environment online. The university is committed to delivering high-quality learning experiences that transform students for global citizenship and individual excellence.

Media Contact

Patrick Giblin
patrickgiblin61@webster.edu
314-246-7174

 @websteru

http://www.webster.edu 

Patrick Giblin | EurekAlert!

Further reports about: Biology acoustic bumble bees microphones pollination services

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>