Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofeedback system designed to control photosynthetic lighting

10.05.2016

System helps lights adapt to plants' needs in controlled environment agriculture

Controlled environment agriculture is rapidly becoming an important part of the global food system. For example, there has been much interest in the potential of large-scale, indoor agricultural production - often referred to as vertical farming - as a means to produce high quantities of produce.


A sweetpotato crop is shown in the biofeedback system. Chlorophyll fluorescence measurements are taken on the plant on the right side to determine how efficiently the plant uses the light provided by LEDs. LED light levels are automatically adjusted to maintain specific levels of physiological activity.

Photo courtesy Michael T. Martin

These "plant factories" are expensive to operate, however, in part because of the large power requirements of electric lamps that provide the type and amount of light necessary for photosynthesis in plants.

To find new methods of adapting lighting to plants' requirements in controlled environments such as vertical farms, the researchers developed and tested a biofeedback system that allows for the control of light levels based on the physiological performance of the plants.

"Controlling the intensity of light based on plants' ability to use it efficiently may substantially reduce the energy cost of LED lighting, and contribute to making large-scale controlled environment agriculture more profitable," van Iersel said.

The researchers used lettuce, pothos, and sweetpotato plants in experiments with photosynthetic light provided by a 400-Watt LED. Using chlorophyll fluorescence measurements, a datalogger determined how efficiently the plants used the light they received.

This data was used to calculate the electron transport rate (ETR), which is an indicator of photosynthesis. The datalogger then altered the duty cycle (the proportion of time that the LEDs are energized during each short on/off cycle) of the LEDs to provide more or less light.

The target ETR was altered in a stepwise pattern over a 15-h period. The biofeedback system was capable of automatically adjusting the light levels to assure that the desired ETR was reached. As the target ETR was increased, light levels increased as well. In addition, conversion of light energy into heat (a common way for plants to deal with excess light) was upregulated, while the light use efficiency decreased.

As the target ETR was decreased during the last 7 hours, conversion of light into heat decreased greatly in lettuce and pothos, with only a small increase in light use efficiency. "This suggests that the light use efficiency of lettuce and pothos was limited by a process other than conversion into heat, likely light-induced damage to the photosynthetic machinery in the leaves," the authors noted.

"The biofeedback system successfully maintained a wide range of ETR values in different species, while it also is capable of distinguishing between conversion of light into heat and damage to the photosynthetic machinery as causes for decreases in light use efficiency," the authors said. They said the biofeedback system has potential applications in controlled environment agriculture, as well as basic plant physiology studies, where the system can be used to maintain specific levels of physiological activity.

###

The complete study and abstract are available on the ASHS J. Amer. Soc. Hort. Sci. electronic journal web site: http://journal.ashspublications.org/content/141/2/169.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff
mwneff@ashs.org
703-836-4606

 @ASHS_Hort

http://www.ashs.org 

Michael W. Neff | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>