Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better soil data key for future food security

21.06.2016

Future food security depends on a variety of factors – but better soil data could substantially help improve projections of future crop yields, shows a new study from the International Institute for Applied Systems Analysis (IIASA).

To project how much food can be produced in the future, researchers use agricultural models that estimate crop yield, or how much of a crop can be produced in a certain amount of space. These models take into account factors like climate and weather variability, irrigation, fertilizer, and soil type. A new study published in the journal Nature Communications shows that the type of soil used in such a model can often outweigh the effects of weather variability—such as year to year changes in rainfall and temperature.


This map shows the relative importance of soil compared to climate in models of crop yield, for different scenarios of fertilizer or irrigation use. (© Folberth et al 2016)

© Folberth et al 2016

The study is the first global assessment of the importance of soils in global crop models. In particular, it shows that for yield projections in regions that use little fertilizer or irrigation—often poorer regions with many small farms—crop yield variability related to soil type can be larger than yield variability due to weather. In places where farmers use a large amount of fertilizer, the impact of soil type was smaller.

“In extreme cases, climate change impacts on yield can be either negative or positive depending on the soil type chosen for the simulation. This has big implications for any recommended changes in crop and soil management to better adapt to future climate impacts,” says IIASA and LMU Munich researcher Christian Folberth, who led the study.

“In crop models, as in reality, soils have the capacity to buffer or amplify climate impacts, for example through the provision of water during the early stages of a drought.

Generally, when global crop modelers use soil data, only one soil type in each location (or grid cell) is used, even though there may be more than 30 different soil types occurring in that location according to the soil dataset. Since we do not know which soil is cultivated, and which crops are grown on which soils, there is a large uncertainty associated with the choice of the soil used in the simulation. So far, since only one soil would be simulated, this uncertainty has not been quantified at the global level,” explains study co-author Marijn van der Velde, from the European Commission’s Joint Research Centre (JRC).

In addition, the researchers say, global crop models often do not include soil management for climate resilience, nutrient management, or erosion control, all factors that can affect yield.

“This study shows that soils contribute significant uncertainty to our models, besides the uncertainty arising from the models themselves and climate data. The difference is that reducing the uncertainty about climate is a very difficult task, but reducing the uncertainty from soil type is something we can do quickly with a relatively low cost,” says IIASA Ecosystems Services and Management Program Director Michael Obersteiner. “This study gives decision makers a clear call to invest in improved soil observations.”

The findings also underscore that most uncertainty centers around regions that are potentially the most vulnerable to climate change impacts on food production. The researchers say that further research is needed to add detailed soil and cropland data to global climate and crop production models.

Reference
Folberth C, Skalsky R, Moltchanova E, Balkovic J, Azevedo L, Obersteiner M, van der Velde M (2016). Uncertainty in soil data can outweigh climate impact signals in crop yield simulations. Nature Communications doi: 10.1038/NCOMMS11872

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>