Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applying research agendas to sport fishing

05.06.2015

As one of the most highly prized game fish in the upper Midwest, muskellunge (also known as muskies) and northern pike help support a $20 billion sport fishing industry. Facing declines in natural reproduction, a team of scientists, including a Michigan State University inland fisheries researcher, has developed a list of research and management needs to help keep the fish -- and the industry -- thriving.

'Muskies and northern pike are the largest predatory fishes in this region, making them high-profile fisheries,' explained Joe Nohner, doctoral student in fisheries at the MSU Center for Systems Integration and Sustainability. 'By supporting strong pike and muskellunge populations, we can provide better fishing opportunities and a strong recreational fishing industry.'


Two adult muskie engage in their courtship dance in a northern Wisconsin lake.

Courtesy of Joe Nohner/ MSU Center for Systems Integration and Sustainability

Working with scientists from across the region, Nohner helped prioritize research and management needs for muskie and northern pike, including:

  • Identifying and conserving the fishes' spawning habitats
  • Improving knowledge and management of the effects of fishing on trophy-sized fish
  • Understanding how stocking and fishing influence the genetic makeup of these fish populations

According to Nohner, most of the past research and management programs have focused on adult fish and protection from overfishing. While managers and anglers focus on adult fish populations, some fisheries have been undercut by declining natural reproduction. Fish populations have been kept up through stocking, so in many areas the fishery isn't self-sustaining.

'We believe we need a more holistic approach to managing these fishes,' Nohner said. 'We want to include genetics, habitat needs at all life stages, and include the effects of humans in the equation. It's somewhat daunting, but new technologies will help us meet the challenge.'

Nohner has started tackling part of the challenge himself, creating a computer mapping technique to predict the location of muskie spawning habitats.

By studying 28 lakes in northern Wisconsin, he and his colleague found that muskies preferred spawning in bays with moderately sloping lake bottoms and that the fish also preferred not to spawn along shorelines with houses or other development.

'Lakes with more development are less likely to be muskie spawning habitats,' Nohner said. 'Fisheries managers, county commissioners and lakeshore property owners may have to consider where development is located and how that will affect the fish.

'We found that muskie spawning site selection may be more complex than previously thought,' he continued. 'There is not just one particular characteristic that makes the fish gravitate to an area for spawning. There seem to be several factors that affect the location, which is why we need a modelling program to help identify those critical habitats.'

###

The paper 'Muskellunge and northern pike ecology and management: important issues and research needs' is published in the June issue of Fisheries. Besides Nohner, other authors are Derek Crane, John Farrell and Kevin Kapuscinski, of the State University of New York-Syracuse; Loren Miller, of the Minnesota Department of Natural Resources; James Diana, of the University of Michigan; and John Casselman, of Queen's University.

The paper 'Muskellunge spawning site selection in northern Wisconsin and a GIS-based predictive model' is published in the February issue of the North American journal of Fisheries Management. Nohner and Diana are the authors. The research was funded by the Wisconsin Department of Natural Resources, the Musky Clubs Alliance of Wisconsin, the University of Michigan and the Alvan Macauley Fellowship.

The Center for Systems Integration and Sustainability integrates ecology with socioeconomics, demography and other disciplines to conduct cutting-edge research on ecological sustainability on local, national and global scales.

Media Contact

Sue Nichols
nichols@msu.edu
517-432-0206

 @MSUnews

http://msutoday.msu.edu/journalists/

Sue Nichols | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>