Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applying research agendas to sport fishing

05.06.2015

As one of the most highly prized game fish in the upper Midwest, muskellunge (also known as muskies) and northern pike help support a $20 billion sport fishing industry. Facing declines in natural reproduction, a team of scientists, including a Michigan State University inland fisheries researcher, has developed a list of research and management needs to help keep the fish -- and the industry -- thriving.

'Muskies and northern pike are the largest predatory fishes in this region, making them high-profile fisheries,' explained Joe Nohner, doctoral student in fisheries at the MSU Center for Systems Integration and Sustainability. 'By supporting strong pike and muskellunge populations, we can provide better fishing opportunities and a strong recreational fishing industry.'


Two adult muskie engage in their courtship dance in a northern Wisconsin lake.

Courtesy of Joe Nohner/ MSU Center for Systems Integration and Sustainability

Working with scientists from across the region, Nohner helped prioritize research and management needs for muskie and northern pike, including:

  • Identifying and conserving the fishes' spawning habitats
  • Improving knowledge and management of the effects of fishing on trophy-sized fish
  • Understanding how stocking and fishing influence the genetic makeup of these fish populations

According to Nohner, most of the past research and management programs have focused on adult fish and protection from overfishing. While managers and anglers focus on adult fish populations, some fisheries have been undercut by declining natural reproduction. Fish populations have been kept up through stocking, so in many areas the fishery isn't self-sustaining.

'We believe we need a more holistic approach to managing these fishes,' Nohner said. 'We want to include genetics, habitat needs at all life stages, and include the effects of humans in the equation. It's somewhat daunting, but new technologies will help us meet the challenge.'

Nohner has started tackling part of the challenge himself, creating a computer mapping technique to predict the location of muskie spawning habitats.

By studying 28 lakes in northern Wisconsin, he and his colleague found that muskies preferred spawning in bays with moderately sloping lake bottoms and that the fish also preferred not to spawn along shorelines with houses or other development.

'Lakes with more development are less likely to be muskie spawning habitats,' Nohner said. 'Fisheries managers, county commissioners and lakeshore property owners may have to consider where development is located and how that will affect the fish.

'We found that muskie spawning site selection may be more complex than previously thought,' he continued. 'There is not just one particular characteristic that makes the fish gravitate to an area for spawning. There seem to be several factors that affect the location, which is why we need a modelling program to help identify those critical habitats.'

###

The paper 'Muskellunge and northern pike ecology and management: important issues and research needs' is published in the June issue of Fisheries. Besides Nohner, other authors are Derek Crane, John Farrell and Kevin Kapuscinski, of the State University of New York-Syracuse; Loren Miller, of the Minnesota Department of Natural Resources; James Diana, of the University of Michigan; and John Casselman, of Queen's University.

The paper 'Muskellunge spawning site selection in northern Wisconsin and a GIS-based predictive model' is published in the February issue of the North American journal of Fisheries Management. Nohner and Diana are the authors. The research was funded by the Wisconsin Department of Natural Resources, the Musky Clubs Alliance of Wisconsin, the University of Michigan and the Alvan Macauley Fellowship.

The Center for Systems Integration and Sustainability integrates ecology with socioeconomics, demography and other disciplines to conduct cutting-edge research on ecological sustainability on local, national and global scales.

Media Contact

Sue Nichols
nichols@msu.edu
517-432-0206

 @MSUnews

http://msutoday.msu.edu/journalists/

Sue Nichols | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>