Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017

A researcher at the UPV/EHU-University of the Basque Country has studied the properties produced due to feeding with ammonium despite generating less growth than the nitrate

Plants need nitrogen to grow, and intensive agriculture requires the input of nitrogen compounds. However, classical, nitrate-based fertilization is responsible for considerable environmental problems, such as the contamination of surface and underground water due to nitrate leaching, and the emission of greenhouse gases, owing to the effect of the micro-organisms in the soil that use the nitrate and produce nitrous oxide, a significant greenhouse gas.


Ammonium nutrition could increase the concentration of anti-oxidants and anticarcinogens in broccoli.

Credit: Nate Steiner

In order to alleviate these problems, "an attempt is being made to encourage a different type of fertilizer treatment, and one of them is the use of ammonia together with nitrification inhibitors. The inhibitors cause this ammonia to be in the soil for longer and this helps to mitigate nitrate leaching and also nitrous oxide emissions," explained Daniel Marino, researcher in the UPV/EHU's NUMAPS research group, which has conducted this study in collaboration with Dr Pedro Aparicio-Tejo of the UPN/NUP-Public University of Navarre. Yet this source of nitrogen has a special feature: "it can be toxic for plants and lead to reduced growth than when nitrate is used. In our group we are studying the tolerance and sensitivity of different plants to this source of nitrogen". Seeking to go further into this subject, they went on to study the proteome of a model plant, Arabidopsis thaliana. "Without focussing on any protein in particular, we decided to see what differences were displayed by this plant within the synthesised proteins as a whole when ammonium or nitric fertilizers are applied," said Daniel Marino.

The same results in edible plants

When studying the type and quantity of proteins accumulated in the plants with each type of nutrition, "what seemed most interesting to us is that there were some proteins related to the metabolism of glucosinolates which accumulate in a greater quantity in plants receiving an ammonium input," stressed the researcher. In general, glucosinolates have two properties: they are natural insecticides and one of them in particular, glucoraphanin, has anticarcinogenic properties.

Given that the experiments had been conducted using the plant Arabidopsis thaliana, a model plant widely used in research but of no commercial interest, they decided to repeat the experiment, "but this time with broccoli plants. Although we did not manage to study the glucosinolate content in the part of the broccoli of greatest food interest, which is the flower, we saw that the leaves of the young plants accumulated a greater quantity of glucoraphanin when we added the source of nitrogen by means of ammonium than when we did so using nitrate," explained Marino.

In view of these results, the research group is continuing to work on this aspect and they have even been in contact with several companies that could be interested in them. So in order to pursue their possible commercial application "we carried out field experiments where the system is much more complex, due, among other things, to the micro-organisms in the soil that also use ammonium as a source of nitrogen. So in the field experiments we will also be interested in analysing the glucosinolate content in the broccoli inflorescence, the part of the plant that is consumed most. On the other hand, from a more fundamental point of view, we are also interested in knowing the effect that the glucosinolates could have on the ammonium tolerance of the plant itself," he explained.

###

Additional information

The biologist Daniel Marino-Bilbao, an Ikerbasque Research Fellow at the UPV/EHU, is a member of the research group NUMAPS (Nutrition Management in Plant and Soil), led by Carmen González-Murua, of the department of Plant Biology and Ecology in the UPV/EHU's Faculty of Science and Technology.

Bibliographical reference

Marino D, Ariz I, Lasa B, Santamaría E, Fernández-Irigoyen J, González-Murua C, Aparicio-Tejo P (2016) Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea. Journal of Experimental Botany 67: 3313-3323.

Media Contact

Matxalen Sotillo
komunikazioa@ehu.eus
34-688-673-770

 @upvehu

http://www.ehu.es 

Matxalen Sotillo | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>