Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of 2 (soil) cities

02.07.2015

Use of cover crops increases diversity in pore sizes, organic matter

As we walk along a forest path, the soil beneath our feet seems like a uniform substance. However, it is an intricate network of soil particles, pores, minerals, soil microbes, and more. It is awash in variety.


A soil sample with the remains of plant leaves after three weeks inside the sample. The leaf is shown in green. In gray are the mycelia of fungi consuming the leaf.

Credit: Computed tomography scanning at Advanced Photon Source, Argonne National Laboratory with the help of Dr. Mark Rivers.

Soil is a living, dynamic substance, and the microbial life within it is crucial to providing plant life with the food they need to grow. The microbes can be bacteria or fungi, but both need space--the pores--for a good living environment.

Soil particles that clump together are aggregates. These are the architectural building blocks of soil. Their presence has a major effect on the behavior of the soil as a community. Multiple processes form the aggregates: cycles of wetting-drying, thawing-freezing, earthworm activity, actions by fungi, and interaction with plant roots.

No matter what formed the aggregates, the pores are affected. So are the microbes living in them.

Sasha Kravchenko, a soil scientist and professor at Michigan State University, studies soils and their pores in different agricultural systems. Her recent work showed that long-term differences in soil use and management influence not only the sizes and numbers of soil aggregates, but also what the pores inside them will look like.

"Pores influence the ability of bacteria to travel and access soil resources," Kravchenko says. In return for this good home, the microbes help plants access essential nutrients.

"The numbers of bacteria that live in the soil are enormous," says Kravchenko. "However, if we think about the actual sizes of the individual bacteria and the distances in a gram of soil - that soil is actually very scarcely populated."

To give an idea of what bacterial communities might look like, Kravchenko gives this image: Imagine looking out an airplane window at night over the Midwest. "It's mostly darkness with occasional bright specks of lone farms - those represent individual bacteria.

Occasionally, you'll see bright spots of small towns - those would be bacterial colonies. Rarely, you'll see a larger town or city."

Kravchenko's work compared two contrasting agricultural systems. The soil in one system, referred to as conventional in the study, grew crops such as corn in summers. Then the soil was barren from the time of main crop harvest through planting the following spring. The soil in the other system, the cover crop system, had live vegetation year-round.

"These systems have been in place since 1989, so there was plenty of time for the differences between the two systems...to develop," Kravchenko says. "Most of the changes in soil characteristics do not happen overnight. They need time to develop to such an extent that will be sufficient for researchers to detect those changes using currently available measurement tools."

Several surprising observations sprang from the study. First, the aggregates of the two agricultural systems developed different pore characteristics. The aggregates from soil in the cover crop system were more complex and varied in their interior pore structures with more large and medium-sized pores. The conventional system had more small pores spread more evenly through the entire aggregate.

Moreover, microbial communities living in individual aggregates from the same system did not look very much alike. This indicates that an individual aggregate may be a unique system of its own with its own physical build and structure. Much like neighboring cities, an aggregate's community of inhabitants might be quite different from the community next to it.

Within individual aggregates, different bacteria appeared to prefer different conditions. Many of them liked the areas that had a lot of pores with smaller (30-90 micron) diameter, while others preferred being around large (more than 150 micron) pores. "We don't know for sure why that was so, but it is likely that pores of this size provided optimal settings in terms of transport of nutrients, fluxes of air and water, and ability of bacteria to reach and decompose plant residues," Kravchenko says.

These findings highlight the complex interaction of soil particles, pores, microbes, and the plants that grow in them.

Kravchenko and her team used x-ray computed tomography (similar to a medical CT scan). Keeping the aggregates intact gave them an opportunity to view how the soil particles, pores, and particulate organic matter interact in their natural state. "There is only so much we can learn about how soil functions if we work with disturbed soil samples. To get a complete picture we need to look at soil in its intact form."

The research was published in the Soil Science Society of America Journal.

Susan Fisk | EurekAlert!

Further reports about: Agronomy Soil agricultural systems bacteria bacterial conventional crop microbes microbial micron nutrients

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>