Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A global conflict: agricultural production vs. biodiversity

06.03.2018

Land-use planning could reconcile agricultural growth with conservation of nature

Smart land-use planning could ease the conflict between agricultural production and nature conservation. A team of researchers from the University of Göttingen, the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Münster integrated global datasets on the geographical distributions and ecological requirements of thousands of animal species with detailed information on the production of the world’s major agricultural crops. The results were published in Global Change Biology.


Central European agricultural landscape in Germany.

Photo: Christoph Scherber


Lead author Lukas Egli

Photo: Lukas Egli

Increasing agricultural production usually leads to various negative side effects in agricultural landscapes, such as local decline in wildlife and loss of ecosystem functions. But what would happen if agricultural growth would be focused on areas of the world where only a few animal species would be affected?

The researchers evaluated how far global biodiversity loss could be minimized by such planning. They found that 88 percent of the biodiversity that is expected to be lost under future agricultural intensification could be avoided if global land use was spatially optimized.

“However, global optimization implies that species-rich countries, mainly in the tropics, would be more responsible for safeguarding the world’s natural resources – at the expense of their own production opportunities and economic development,” says lead author Lukas Egli of Göttingen University and UFZ.

This applies mainly to countries that are highly dependent on agriculture. “Unless such conflicting national interests can be somehow accommodated in international sustainability policies, global cooperation seems unlikely and might generate new socioeconomic dependencies.”

Ten countries could already reduce the expected global biodiversity loss by one third if they followed the researchers’ suggestions on the national level. If every country followed, as much as 61 percent of the expected global biodiversity loss could be avoided. “A few tropical countries including India, Brazil, or Indonesia would have by far the greatest leverage for making global agricultural production more sustainable”, says Carsten Meyer of iDiv and Leipzig University.

“Unfortunately, these countries are also often characterized by domestic land-use conflicts as well as by relatively weak land-governing institutions, both of which currently inhibits land-use optimization. Targeted efforts are needed to improve these countries’ capacities for integrated and sustainable land-use planning.”

Original publication: Lukas Egli et al. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Global Change Biology 2018. Doi: 10.1111/gcb.14076.

Contact:
Lukas Egli
Helmholtz Centre for Environmental Research – Department of Ecological Modelling /
University of Göttingen – Agroecology Group
Email: lukas.egli@ufz.de

Dr. Carsten Meyer
German Centre for Integrative Biodiversity Research (iDiv) / University of Leipzig
Email: carsten.meyer@idiv.de
Web: http://www.idiv.de/groups_and_people/employees/details/eshow/meyer-carsten.html

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>