Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc Oxide Materials Tapped for Tiny Energy Harvesting Devices

14.01.2015

New research helps pave the way toward highly energy-efficient zinc oxide-based micro energy harvesting devices with applications in portable communications, healthcare and environmental monitoring, and more.

Today, we’re surrounded by a variety of electronic devices that are moving increasingly closer to us – we can attach and wear them, or even implant electronics inside our bodies.


Giwan Yoon/Korea Advanced Institute of Science and Technology

This illustration shows stacked flexible nanogenerators (left), and a cross-sectional transmission electron microscopy image of the ZnO/AlN-stacked structure. The scale bar on the right represents 200 nm.

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable and powered by ambient renewable energy.

This last goal inspired a group of Korea Advanced Institute of Science and Technology (KAIST) researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be more effectively used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The researchers report their findings in the journal Applied Physics Letters, from AIP Publishing.

“Mechanical energy exists everywhere, all the time, and in a variety of forms – including movement, sound and vibration. The conversion from mechanical energy to electrical energy is a reliable approach to obtain electricity for powering the sustainable, wireless and flexible devices – free of environmental limitations,” explained Giwan Yoon, a professor in the Department of Electrical Engineering at KAIST.

Piezoelectric materials such as ZnO, as well as several others, have the ability to convert mechanical energy to electrical energy, and vice versa. “ZnO nanostructures are particularly suitable as nanogenerator functional elements, thanks to their numerous virtues including transparency, lead-free biocompatibility, nanostructural formability, chemical stability, and coupled piezoelectric and semiconductor properties,” noted Yoon.

The key concept behind the group’s work? Flexible ZnO-based micro energy harvesting devices, aka “nanogenerators,” can essentially be comprised of piezoelectric ZnO nanorod or nanowire arrays sandwiched between two electrodes formed on the flexible substrates. In brief, the working mechanisms involved can be explained as a transient flow of electrons driven by the piezoelectric potential.

“When flexible devices can be easily mechanically deformed by various external excitations, strained ZnO nanorods or nanowires tend to generate polarized charges, which, in turn, generate piezoelectronic fields,” said Yoon. “This allows charges to accumulate on electrodes and it generates an external current flow, which leads to electronic signals. Either we can use the electrical output signals directly or store them in energy storage devices.”

Other researchers have reported that the use of insulating materials can help provide an extremely large potential barrier. “This makes it critically important that insulating materials are carefully selected and designed – taking both the material properties and the device operation mechanism into consideration,” said Eunju Lee, a postdoctoral researcher in Yoon’s group.

To date, however, there have been few efforts made to develop new insulating materials and assess their applicability to nanogenerator devices or determine their effects on the device output performance.

The KAIST researchers proposed, for the first time, new piezoelectric ZnO/aluminum nitride (AlN) stacked layers for use in nanogenerators.

“We discovered that inserting AlN insulating layers into ZnO-based harvesting devices led to a significant improvement of their performance – regardless of the layer thickness and/or layer position in the devices,” said Lee. “Also, the output voltage performance and polarity seem to depend on the relative position and thickness of the stacked ZnO and AlN layers, but this needs to be explored further.”

The group’s findings are expected to provide an effective approach for realizing highly energy-efficient ZnO-based micro energy harvesting devices. “This is particularly useful for self-powered electronic systems that require both ubiquity and sustainability – portable communication devices, healthcare monitoring devices, environmental monitoring devices and implantable medical devices,” pointed out Yoon. And there are potentially many other applications.

Next up, Yoon and colleagues plan to pursue a more in-depth study to gain a much more precise and comprehensive understanding of device operation mechanisms. “We’ll also explore the optimum device configurations and dimensions based on the operation mechanism analysis work,” he added.

The article, "Characteristics of piezoelectric ZnO/AlN—stacked flexible nanogenerators for energy harvesting applications," is authored by Eunju Lee, Jaedon Park, Munhyuk Yim, Yeongseon Kim and Giwan Yoon. It will be published in the journal Applied Physics Letters on January 13, 2015 (DOI: 10.1063/1.4904270). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4904270

The authors of this paper are affiliated with Korea Advanced Institute of Science and Technology.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org 

Contact Information
Jason Socrates Bardi
American Institute of Physics
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>