Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc Oxide Materials Tapped for Tiny Energy Harvesting Devices

14.01.2015

New research helps pave the way toward highly energy-efficient zinc oxide-based micro energy harvesting devices with applications in portable communications, healthcare and environmental monitoring, and more.

Today, we’re surrounded by a variety of electronic devices that are moving increasingly closer to us – we can attach and wear them, or even implant electronics inside our bodies.


Giwan Yoon/Korea Advanced Institute of Science and Technology

This illustration shows stacked flexible nanogenerators (left), and a cross-sectional transmission electron microscopy image of the ZnO/AlN-stacked structure. The scale bar on the right represents 200 nm.

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable and powered by ambient renewable energy.

This last goal inspired a group of Korea Advanced Institute of Science and Technology (KAIST) researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be more effectively used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The researchers report their findings in the journal Applied Physics Letters, from AIP Publishing.

“Mechanical energy exists everywhere, all the time, and in a variety of forms – including movement, sound and vibration. The conversion from mechanical energy to electrical energy is a reliable approach to obtain electricity for powering the sustainable, wireless and flexible devices – free of environmental limitations,” explained Giwan Yoon, a professor in the Department of Electrical Engineering at KAIST.

Piezoelectric materials such as ZnO, as well as several others, have the ability to convert mechanical energy to electrical energy, and vice versa. “ZnO nanostructures are particularly suitable as nanogenerator functional elements, thanks to their numerous virtues including transparency, lead-free biocompatibility, nanostructural formability, chemical stability, and coupled piezoelectric and semiconductor properties,” noted Yoon.

The key concept behind the group’s work? Flexible ZnO-based micro energy harvesting devices, aka “nanogenerators,” can essentially be comprised of piezoelectric ZnO nanorod or nanowire arrays sandwiched between two electrodes formed on the flexible substrates. In brief, the working mechanisms involved can be explained as a transient flow of electrons driven by the piezoelectric potential.

“When flexible devices can be easily mechanically deformed by various external excitations, strained ZnO nanorods or nanowires tend to generate polarized charges, which, in turn, generate piezoelectronic fields,” said Yoon. “This allows charges to accumulate on electrodes and it generates an external current flow, which leads to electronic signals. Either we can use the electrical output signals directly or store them in energy storage devices.”

Other researchers have reported that the use of insulating materials can help provide an extremely large potential barrier. “This makes it critically important that insulating materials are carefully selected and designed – taking both the material properties and the device operation mechanism into consideration,” said Eunju Lee, a postdoctoral researcher in Yoon’s group.

To date, however, there have been few efforts made to develop new insulating materials and assess their applicability to nanogenerator devices or determine their effects on the device output performance.

The KAIST researchers proposed, for the first time, new piezoelectric ZnO/aluminum nitride (AlN) stacked layers for use in nanogenerators.

“We discovered that inserting AlN insulating layers into ZnO-based harvesting devices led to a significant improvement of their performance – regardless of the layer thickness and/or layer position in the devices,” said Lee. “Also, the output voltage performance and polarity seem to depend on the relative position and thickness of the stacked ZnO and AlN layers, but this needs to be explored further.”

The group’s findings are expected to provide an effective approach for realizing highly energy-efficient ZnO-based micro energy harvesting devices. “This is particularly useful for self-powered electronic systems that require both ubiquity and sustainability – portable communication devices, healthcare monitoring devices, environmental monitoring devices and implantable medical devices,” pointed out Yoon. And there are potentially many other applications.

Next up, Yoon and colleagues plan to pursue a more in-depth study to gain a much more precise and comprehensive understanding of device operation mechanisms. “We’ll also explore the optimum device configurations and dimensions based on the operation mechanism analysis work,” he added.

The article, "Characteristics of piezoelectric ZnO/AlN—stacked flexible nanogenerators for energy harvesting applications," is authored by Eunju Lee, Jaedon Park, Munhyuk Yim, Yeongseon Kim and Giwan Yoon. It will be published in the journal Applied Physics Letters on January 13, 2015 (DOI: 10.1063/1.4904270). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4904270

The authors of this paper are affiliated with Korea Advanced Institute of Science and Technology.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org 

Contact Information
Jason Socrates Bardi
American Institute of Physics
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>