Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc Oxide Materials Tapped for Tiny Energy Harvesting Devices

14.01.2015

New research helps pave the way toward highly energy-efficient zinc oxide-based micro energy harvesting devices with applications in portable communications, healthcare and environmental monitoring, and more.

Today, we’re surrounded by a variety of electronic devices that are moving increasingly closer to us – we can attach and wear them, or even implant electronics inside our bodies.


Giwan Yoon/Korea Advanced Institute of Science and Technology

This illustration shows stacked flexible nanogenerators (left), and a cross-sectional transmission electron microscopy image of the ZnO/AlN-stacked structure. The scale bar on the right represents 200 nm.

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable and powered by ambient renewable energy.

This last goal inspired a group of Korea Advanced Institute of Science and Technology (KAIST) researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be more effectively used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The researchers report their findings in the journal Applied Physics Letters, from AIP Publishing.

“Mechanical energy exists everywhere, all the time, and in a variety of forms – including movement, sound and vibration. The conversion from mechanical energy to electrical energy is a reliable approach to obtain electricity for powering the sustainable, wireless and flexible devices – free of environmental limitations,” explained Giwan Yoon, a professor in the Department of Electrical Engineering at KAIST.

Piezoelectric materials such as ZnO, as well as several others, have the ability to convert mechanical energy to electrical energy, and vice versa. “ZnO nanostructures are particularly suitable as nanogenerator functional elements, thanks to their numerous virtues including transparency, lead-free biocompatibility, nanostructural formability, chemical stability, and coupled piezoelectric and semiconductor properties,” noted Yoon.

The key concept behind the group’s work? Flexible ZnO-based micro energy harvesting devices, aka “nanogenerators,” can essentially be comprised of piezoelectric ZnO nanorod or nanowire arrays sandwiched between two electrodes formed on the flexible substrates. In brief, the working mechanisms involved can be explained as a transient flow of electrons driven by the piezoelectric potential.

“When flexible devices can be easily mechanically deformed by various external excitations, strained ZnO nanorods or nanowires tend to generate polarized charges, which, in turn, generate piezoelectronic fields,” said Yoon. “This allows charges to accumulate on electrodes and it generates an external current flow, which leads to electronic signals. Either we can use the electrical output signals directly or store them in energy storage devices.”

Other researchers have reported that the use of insulating materials can help provide an extremely large potential barrier. “This makes it critically important that insulating materials are carefully selected and designed – taking both the material properties and the device operation mechanism into consideration,” said Eunju Lee, a postdoctoral researcher in Yoon’s group.

To date, however, there have been few efforts made to develop new insulating materials and assess their applicability to nanogenerator devices or determine their effects on the device output performance.

The KAIST researchers proposed, for the first time, new piezoelectric ZnO/aluminum nitride (AlN) stacked layers for use in nanogenerators.

“We discovered that inserting AlN insulating layers into ZnO-based harvesting devices led to a significant improvement of their performance – regardless of the layer thickness and/or layer position in the devices,” said Lee. “Also, the output voltage performance and polarity seem to depend on the relative position and thickness of the stacked ZnO and AlN layers, but this needs to be explored further.”

The group’s findings are expected to provide an effective approach for realizing highly energy-efficient ZnO-based micro energy harvesting devices. “This is particularly useful for self-powered electronic systems that require both ubiquity and sustainability – portable communication devices, healthcare monitoring devices, environmental monitoring devices and implantable medical devices,” pointed out Yoon. And there are potentially many other applications.

Next up, Yoon and colleagues plan to pursue a more in-depth study to gain a much more precise and comprehensive understanding of device operation mechanisms. “We’ll also explore the optimum device configurations and dimensions based on the operation mechanism analysis work,” he added.

The article, "Characteristics of piezoelectric ZnO/AlN—stacked flexible nanogenerators for energy harvesting applications," is authored by Eunju Lee, Jaedon Park, Munhyuk Yim, Yeongseon Kim and Giwan Yoon. It will be published in the journal Applied Physics Letters on January 13, 2015 (DOI: 10.1063/1.4904270). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4904270

The authors of this paper are affiliated with Korea Advanced Institute of Science and Technology.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org 

Contact Information
Jason Socrates Bardi
American Institute of Physics
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>