Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrinkles give heat a jolt in pillared graphene

03.11.2017

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University engineers.


Heat transport through pillared graphene could be made faster by manipulating the junctions between sheets of graphene and the nanotubes that connect them, according to Rice University researchers.

Credit: Lei Tao/Rice University

Rice materials scientist Rouzbeh Shahsavari and alumnus Navid Sakhavand first built atom-level computer models of pillared graphene -- sheets of graphene connected by covalently bonded carbon nanotubes -- to discover their strength and electrical properties as well as their thermal conductivity.

In a new study, they found that manipulating the joints between the nanotubes and graphene has a significant impact on the material's ability to direct heat. That could be important as electronic devices shrink and require more sophisticated heat sinks.

The research appears in the American Chemical Society journal ACS Applied Materials and Interfaces.

Researchers who study or are working to make pillared graphene have primarily viewed two characteristics of the theoretical material: the length of the pillars and their distance from each other. The new study suggests that a third parameter -- the nature of the junction between the graphene and nanotubes -- should also be considered.

A seamless connection between flat graphene, the atom-thick form of carbon, and round nanotubes requires adjustments to their characteristic six-member carbon rings. The simplest way is to give half the rings at the junction an extra atom. Six seven-member rings alternating with six six-member rings allow the sheet to make a 90-degree turn to become the tube.

But that's not the optimal configuration for heat transport, according to the Rice team. It found that replacing six heptagons with three octagons would facilitate the turn while slightly stressing the graphene. That would wrinkle the graphene sheets' top and bottom while not significantly changing transport at the junctions.

The researchers intuitively expected the wrinkles to lower thermal transport and were surprised to find that thermal transport across the "in-plane" graphene became faster with wrinkles. They determined that having fewer rings in the junctions between nanotubes and graphene meant less scattering of heat-carrying phonons, which kept them onboard for the bumpy ride.

Measured along the longest plane, models with the octagons were nearly 20 percent better at transporting phonons than those without. "Our results show that subtle features such as this junction configuration have a significant impact on thermal transport," said Shahsavari, an assistant professor of civil and environmental engineering and of materials science and nanoengineering. "Given the current needs in thermal management and device miniaturization in many nano- and microelectronics, this study provides a new degree of freedom to play and improve thermal transport."

The researchers thought phonon transport through the nanotubes, which they already knew was slower than in graphene, might be slower still under the influence of the octagons, but the altered interface didn't appear to have a significant effect.

"The reason lies in the geometry," Shahsavari said. "The lower the number of non-hexagonal rings in the junction (for example three octagons versus six heptagons), the lower the number of undesirable rings and thus lower phonon scattering and improved thermal transport." Because the junctions can adopt many different geometries depending on the radius and chirality of the nanotube, there are many more potential configurations to be modeled, he said.

###

Rice University and the National Science Foundation (NSF) supported the research. Computing resources were supplied by Rice's NSF-supported DAVinCI supercomputer administered by Rice's Center for Research Computing and procured in partnership with Rice's Ken Kennedy Institute for Information Technology and resources supported by the National Institutes of Health, an IBM Shared University Research Award, Cisco, Qlogic and Adaptive Computing.

Read the abstract at http://pubs.acs.org/doi/10.1021/acsami.7b16162

This news release can be found online at http://news.rice.edu/2017/11/02/wrinkles-give-heat-a-jolt-in-pillared-graphene/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Pillared graphene gains strength: http://news.rice.edu/2015/09/14/pillared-graphene-gains-strength/

Multiscale Materials Laboratory home page: http://rouzbeh.rice.edu/

George R. Brown School of Engineering: http://engineering.rice.edu

Rice Department of Civil and Environmental Engineering: http://www.ceve.rice.edu

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Image for download:

http://news.rice.edu/files/2017/11/1106_PILLARED-1-WEB-1eec6xu.jpg

Heat transport through pillared graphene could be made faster by manipulating the junctions between sheets of graphene and the nanotubes that connect them, according to Rice University researchers. (Credit: Illustration by Lei Tao/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

Jeff Falk
jfalk@rice.edu
713-348-6775

 @RiceUNews

http://news.rice.edu 

Jeff Falk | EurekAlert!

Further reports about: Computing graphene heat heptagons phonons sheets of graphene wrinkles

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>