Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Highest Magnetic Field* (1,020MHz) NMR developed

03.07.2015

Application of High-Temperature Superconductor Was the Key. A Big Step Forward in Accelerating the Development of New Drugs and Materials

The research team of Japan's National Institute for Materials Science (NIMS), RIKEN, Kobe Steel and JEOL RESONANCE successfully developed the NMR system equipped with world’s highest magnetic field, 1,020 MHz, supported by the JST-SENTAN program “Development of Systems and Technology for Advanced Measurement and Analysis”.


Photo: A part of the recently developed 1,020 MHz-NMR system equipped with superconducting magnets (about 5 m high and weighing about 15 tons). This part contains coils made of a high-temperature superconductor. Liquid helium is used for cooling.

Copyright : NIMS

This research result was published in Journal of Magnetic Resonance on 15 May 2015 (Kenjiro Hashi, Shinobu Ohki, Shinji Matsumoto, Gen Nishijima, Atsushi Goto, Kenzo Deguchi, Kazuhiko Yamada, Takashi Noguchi, Shuji Sakai, Masato Takahashi, Yoshinori Yanagisawa, Seiya Iguchi, Toshio Yamazaki, Hideaki Maeda, Ryoji Tanaka, Takahiro Nemoto, Hiroto Suematsu, Takashi Miki, Kazuyoshi Saito and Tadashi Shimizu, Title:”Achievement of 1,020 MHz NMR”, DOI:10.1016/j.jmr.2015.04.009).

The research team consisting of researchers at NIMS, RIKEN, Kobe Steel and JEOL RESONANCE (a consolidated subsidiary company of JEOL) successfully developed the NMR (nuclear magnetic resonance) system equipped with world’s highest magnetic field, 1,020 MHz, during engagement in the JST-SENTAN program “Development of Systems and Technology for Advanced Measurement and Analysis”. In addition, taking actual measurements with this new system, the team confirmed its considerably enhanced performance compared to conventional NMR systems in terms of sensitivity and resolution.

NMR systems have been used for various purposes including 3D conformational analysis of biopolymers such as proteins, organic chemistry and materials research. In particular, it is one of the indispensable tools for the development of new drugs. In the development of a new drug, it is vital to understand protein structures in a quick and accurate manner.

In this view, improving the performance of NMR systems is of great importance. Magnetic field strength is a key indicator of the performance of NMR systems, and thus there had been fierce competition to develop NMR systems with magnetic fields greater than 1,000 MHz. For a long time, it was broadly expected that the use of high-temperature superconducting technology would enable producing magnetic fields above 1,000 MHz. However, because high-temperature superconductors had problems such as being fragile and difficult to process, no party had achieved their practical use for a long run.

Through developing several new technologies including the conversion of the high-temperature superconductor developed by NIMS in 1988 into the form of wire material, the research team recently created the NMR system equipped with world’s highest magnetic field at 1,020 MHz.

Before making this accomplishment, the team spent 20 years of planning, designing and construction, as well as overcoming many hardships such as suspension of the project due to the damage to the nearly completed system caused by the Great East Japan Earthquake, encountering a serious worldwide shortage of helium supply, and the sudden passing of the team leader.

It is expected that the super-high magnetic field NMR will greatly contribute to various fields such as structural biology, analytical chemistry and materials engineering. Furthermore, considering that NMR requires a magnetic field with extraordinary precision, the high-temperature superconducting technology that was cultivated during the development of NMR is applicable to various high-tech systems such as MRI (magnetic resonance imaging), nuclear fusion, linear motor trains and superconducting power cables.

A part of this study was published in the Journal of Magnetic Resonance on May 15, 2015, and was presented at the Experimental Nuclear Magnetic Resonance Conference, the largest international conference on NMR, held from April 19 to 24 in the United States, and at the 57th Solid-State NMR and Materials Forum held on May 21, 2015 in Japan.

*World’s Highest Magnetic Field: 1020MHz (24.0T) As of Apr 17, 2015


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>