Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World’s Highest Magnetic Field* (1,020MHz) NMR developed


Application of High-Temperature Superconductor Was the Key. A Big Step Forward in Accelerating the Development of New Drugs and Materials

The research team of Japan's National Institute for Materials Science (NIMS), RIKEN, Kobe Steel and JEOL RESONANCE successfully developed the NMR system equipped with world’s highest magnetic field, 1,020 MHz, supported by the JST-SENTAN program “Development of Systems and Technology for Advanced Measurement and Analysis”.

Photo: A part of the recently developed 1,020 MHz-NMR system equipped with superconducting magnets (about 5 m high and weighing about 15 tons). This part contains coils made of a high-temperature superconductor. Liquid helium is used for cooling.

Copyright : NIMS

This research result was published in Journal of Magnetic Resonance on 15 May 2015 (Kenjiro Hashi, Shinobu Ohki, Shinji Matsumoto, Gen Nishijima, Atsushi Goto, Kenzo Deguchi, Kazuhiko Yamada, Takashi Noguchi, Shuji Sakai, Masato Takahashi, Yoshinori Yanagisawa, Seiya Iguchi, Toshio Yamazaki, Hideaki Maeda, Ryoji Tanaka, Takahiro Nemoto, Hiroto Suematsu, Takashi Miki, Kazuyoshi Saito and Tadashi Shimizu, Title:”Achievement of 1,020 MHz NMR”, DOI:10.1016/j.jmr.2015.04.009).

The research team consisting of researchers at NIMS, RIKEN, Kobe Steel and JEOL RESONANCE (a consolidated subsidiary company of JEOL) successfully developed the NMR (nuclear magnetic resonance) system equipped with world’s highest magnetic field, 1,020 MHz, during engagement in the JST-SENTAN program “Development of Systems and Technology for Advanced Measurement and Analysis”. In addition, taking actual measurements with this new system, the team confirmed its considerably enhanced performance compared to conventional NMR systems in terms of sensitivity and resolution.

NMR systems have been used for various purposes including 3D conformational analysis of biopolymers such as proteins, organic chemistry and materials research. In particular, it is one of the indispensable tools for the development of new drugs. In the development of a new drug, it is vital to understand protein structures in a quick and accurate manner.

In this view, improving the performance of NMR systems is of great importance. Magnetic field strength is a key indicator of the performance of NMR systems, and thus there had been fierce competition to develop NMR systems with magnetic fields greater than 1,000 MHz. For a long time, it was broadly expected that the use of high-temperature superconducting technology would enable producing magnetic fields above 1,000 MHz. However, because high-temperature superconductors had problems such as being fragile and difficult to process, no party had achieved their practical use for a long run.

Through developing several new technologies including the conversion of the high-temperature superconductor developed by NIMS in 1988 into the form of wire material, the research team recently created the NMR system equipped with world’s highest magnetic field at 1,020 MHz.

Before making this accomplishment, the team spent 20 years of planning, designing and construction, as well as overcoming many hardships such as suspension of the project due to the damage to the nearly completed system caused by the Great East Japan Earthquake, encountering a serious worldwide shortage of helium supply, and the sudden passing of the team leader.

It is expected that the super-high magnetic field NMR will greatly contribute to various fields such as structural biology, analytical chemistry and materials engineering. Furthermore, considering that NMR requires a magnetic field with extraordinary precision, the high-temperature superconducting technology that was cultivated during the development of NMR is applicable to various high-tech systems such as MRI (magnetic resonance imaging), nuclear fusion, linear motor trains and superconducting power cables.

A part of this study was published in the Journal of Magnetic Resonance on May 15, 2015, and was presented at the Experimental Nuclear Magnetic Resonance Conference, the largest international conference on NMR, held from April 19 to 24 in the United States, and at the 57th Solid-State NMR and Materials Forum held on May 21, 2015 in Japan.

*World’s Highest Magnetic Field: 1020MHz (24.0T) As of Apr 17, 2015

Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>