Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winding borders may enhance graphene

03.02.2015

Rice University theory suggests 'sinuous' grain boundaries add strength, predictable semiconducting properties

Far from being a defect, a winding thread of odd rings at the border of two sheets of graphene has qualities that may prove valuable to manufacturers, according to Rice University scientists.


Periodic grain boundaries in graphene may lend mechanical strength and semiconducting properties to the atom-thick carbon material, according to calculations by scientists at Rice University.

Credit: Zhuhua Zhang/Rice University

Graphene, the atom-thick form of carbon, rarely appears as a perfect lattice of chicken wire-like six-atom rings. When grown via chemical vapor deposition, it usually consists of "domains," or separately grown sheets that bloom outward from hot catalysts until they meet up.

Where they meet, the regular rows of atoms aren't necessarily aligned, so they have to adjust if they are to form a continuous graphene plane. That adjustment appears as a grain boundary, with irregular rows of five- and seven-atom rings that compensate for the angular disparity.

The Rice lab of theoretical physicist Boris Yakobson had calculated that rings with seven carbon atoms can be weak spots that lessen the legendary strength of graphene. But new research at Rice shows meandering grain boundaries can, in some cases, toughen what are known as polycrystalline sheets, nearly matching the strength of pristine graphene.

Conveniently, they can also create a "sizable electronic transport gap," or band gap, according to the paper. Perfect graphene allows for the ballistic transport of electricity, but electronics require materials that can controllably stop and start the flow. These are known as semiconductors, and the ability to control semiconducting characteristics in graphene (and other two-dimensional materials) is a much-sought goal.

In the new work, which appears in Advanced Functional Materials, Yakobson and his team led by postdoctoral researcher Zhuhua Zhang determined that at certain angles, these "sinuous" boundaries relieve stress that would otherwise weaken the sheet.

"If stress along the boundary were alleviated, the strength of the graphene would be enhanced," Zhang said. "But this only applies to sinuous grain boundaries as compared with straight boundaries."

Yakobson and his team calculate the mechanical strength of grain boundaries to determine how they influence each other: where the boundaries are inclined to bind and where they are likely to break under tensile stress. Grain boundaries could minimize the interface energy between sheets by forming pairs of rings called dislocations, where an atom shifts from one six-member ring to its neighbor to form connected five- and seven-atom units.

Sometimes the domains' angles dictate winding rather than straight boundaries. Zhang and his co-authors simulated these sinuous boundaries to measure their tensile strength and band-gap properties. He determined that where these small sections are periodic -- that is, when their patterns repeat along the length of the boundary -- their qualities apply to the entire polycrystalline sheet.

Remarkably, one of his simulations of energetically "preferred" sinuous grain boundaries was a near-perfect match for the asymmetric boundary he spotted in a 2011 paper in the journal Nature. The scanning transmission electron microscopy image showed an atomic grain-boundary structure with a very similar arrangement of dislocations. Only one pair of rings out of the hundred in view was out of place, likely due to a distortion caused by irradiation from the microscope's electron beam, Zhang said.

To take advantage of the Rice lab's predictions, scientists would have to figure out how to grow polycrystalline graphene with precise misalignment of the components. This is a tall order, Yakobson said.

"But this -- so far, hypothetically -- can be achieved if graphene nucleates at the polycrystalline metal substrate with prescribed grain orientations so that the emergent carbon isles inherit the misalignment of the template underneath," Yakobson said.

###

Co-authors include graduate students Yang Yang, Fangbo Xu and Luqing Wang. Yakobson is Rice's Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The Department of Energy and the U.S. Air Force Office of Scientific Research supported the research. The researchers utilized the National Science Foundation-supported DAVinCI and SUGAR supercomputer clusters administered by Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201570023/abstract

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related Materials:

Yakobson Group: http://biygroup.blogs.rice.edu

Department of Materials Science and NanoEngineering: http://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://media.rice.edu 

David Ruth | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>