Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winding borders may enhance graphene

03.02.2015

Rice University theory suggests 'sinuous' grain boundaries add strength, predictable semiconducting properties

Far from being a defect, a winding thread of odd rings at the border of two sheets of graphene has qualities that may prove valuable to manufacturers, according to Rice University scientists.


Periodic grain boundaries in graphene may lend mechanical strength and semiconducting properties to the atom-thick carbon material, according to calculations by scientists at Rice University.

Credit: Zhuhua Zhang/Rice University

Graphene, the atom-thick form of carbon, rarely appears as a perfect lattice of chicken wire-like six-atom rings. When grown via chemical vapor deposition, it usually consists of "domains," or separately grown sheets that bloom outward from hot catalysts until they meet up.

Where they meet, the regular rows of atoms aren't necessarily aligned, so they have to adjust if they are to form a continuous graphene plane. That adjustment appears as a grain boundary, with irregular rows of five- and seven-atom rings that compensate for the angular disparity.

The Rice lab of theoretical physicist Boris Yakobson had calculated that rings with seven carbon atoms can be weak spots that lessen the legendary strength of graphene. But new research at Rice shows meandering grain boundaries can, in some cases, toughen what are known as polycrystalline sheets, nearly matching the strength of pristine graphene.

Conveniently, they can also create a "sizable electronic transport gap," or band gap, according to the paper. Perfect graphene allows for the ballistic transport of electricity, but electronics require materials that can controllably stop and start the flow. These are known as semiconductors, and the ability to control semiconducting characteristics in graphene (and other two-dimensional materials) is a much-sought goal.

In the new work, which appears in Advanced Functional Materials, Yakobson and his team led by postdoctoral researcher Zhuhua Zhang determined that at certain angles, these "sinuous" boundaries relieve stress that would otherwise weaken the sheet.

"If stress along the boundary were alleviated, the strength of the graphene would be enhanced," Zhang said. "But this only applies to sinuous grain boundaries as compared with straight boundaries."

Yakobson and his team calculate the mechanical strength of grain boundaries to determine how they influence each other: where the boundaries are inclined to bind and where they are likely to break under tensile stress. Grain boundaries could minimize the interface energy between sheets by forming pairs of rings called dislocations, where an atom shifts from one six-member ring to its neighbor to form connected five- and seven-atom units.

Sometimes the domains' angles dictate winding rather than straight boundaries. Zhang and his co-authors simulated these sinuous boundaries to measure their tensile strength and band-gap properties. He determined that where these small sections are periodic -- that is, when their patterns repeat along the length of the boundary -- their qualities apply to the entire polycrystalline sheet.

Remarkably, one of his simulations of energetically "preferred" sinuous grain boundaries was a near-perfect match for the asymmetric boundary he spotted in a 2011 paper in the journal Nature. The scanning transmission electron microscopy image showed an atomic grain-boundary structure with a very similar arrangement of dislocations. Only one pair of rings out of the hundred in view was out of place, likely due to a distortion caused by irradiation from the microscope's electron beam, Zhang said.

To take advantage of the Rice lab's predictions, scientists would have to figure out how to grow polycrystalline graphene with precise misalignment of the components. This is a tall order, Yakobson said.

"But this -- so far, hypothetically -- can be achieved if graphene nucleates at the polycrystalline metal substrate with prescribed grain orientations so that the emergent carbon isles inherit the misalignment of the template underneath," Yakobson said.

###

Co-authors include graduate students Yang Yang, Fangbo Xu and Luqing Wang. Yakobson is Rice's Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The Department of Energy and the U.S. Air Force Office of Scientific Research supported the research. The researchers utilized the National Science Foundation-supported DAVinCI and SUGAR supercomputer clusters administered by Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201570023/abstract

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related Materials:

Yakobson Group: http://biygroup.blogs.rice.edu

Department of Materials Science and NanoEngineering: http://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://media.rice.edu 

David Ruth | EurekAlert!

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>