Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are these nanostars in 2-D superconductor supposed to mean?

19.10.2015

Physicists from France and Russia have discovered magnetic disturbances in 2-D superconductor layer, resembling little oscillating stars; these star-like excitations are caused by a single magnetic atom put into the layer of superconducting material

Physicists from France and Russia have discovered magnetic disturbances in 2D superconductor layer, resembling little oscillating stars. These star-like excitations are caused by a single magnetic atom put into the layer of superconducting material.


Nanostars

Credit: MIPT

What they mean is that now the Yu-Shibo-Rusinov chains are proved to exist not only in theory. Moreover, it was found out that in the two-dimensional systems the magnetic disturbances spread on longer distances and seem to be more sustainable - which brings us a step closer towards the long-awaited quantum computers. The results were published in Nature Physics this week.

According to one of the study's co-authors from MIPT, the observed effect looks like magnetic "nanostars in the superconducting univers"; building constellations of them can be used in quantum electronics.

Physicists from France and Russia have discovered that the magnetic atoms in a two-dimensional layered superconductor create electronic disturbances that look like oscillating "nanostars". A "constellation" of these disturbances could be used in quantum electronics. The results of the study have been published in the prestigious scientific journal Nature Physics.

Prof. Dmitri Roditchev from the Superior School of Industrial Physics and Chemistry (ESPCI ParisTech, Paris), Gerbold Ménard,Dr. Christophe Brun, Dr. Tristan Cren from the Institute of Nanosciences of Paris at Sorbonne University, Dr. Vasily Stolyarov from the Laboratory of Topological Quantum Phenomena in Superconducting Systems at MIPT, and their colleagues from Paris-Saclay University studied the emergence of Yu-Shiba-Rusinov (YSR) states bound around single magnetic atoms embedded in a two-dimensional superconductor.

YSR states were theoretically predicted in the 1960s, but very few evidences for them have been experimentally revealed till now. In the present work it was found that in two-dimensional systems, magnetic excitations extend over a greater distance as compared to ordinary three-dimensional superconductors, and the emergent YSR quantum states are more stable, which makes them more suitable for developing a new generation of quantum electronics.

A crystal lattice of a layered superconducting material -niobium diselenide - was used in the tests. With an ultra-low-temperature scanning tunnelling microscope built by Roditchev, the researchers were able to observe , for the first time, YSR states around single magnetic atoms of iron. "We have demonstrated that the use of two-dimensional superconductors instead of the three dimensional ones results in an increase in the spatial extension of YSR states for several dozen nanometres, i.e. ten times further than in "normal" three-dimensional superconductors.

And the area of excitation was shaped like a six-fold electronic "star" with its rays extending along the axis of the crystal lattice of niobium diselenide. The observed "stars" are more stable and more suitable to creating new topologically protected states. Non-Abelian anyons can be collected from the YSR state chains, and can then be used as elements in quantum computers of the future," says Vasily Stolyarov, a co-author of the study and the head of the Laboratory of Topological Quantum Phenomena in Superconducting Systems at MIPT.

The experiments described in the article were conducted in Paris. Work is underway at MIPT's Laboratory of Topological Quantum Phenomena in Superconducting Systems to create the experimental conditions necessary to obtain such high quality results. The Laboratory was set up in 2014 using funds from a mega grant awarded to Alexander Golubov, a professor at the University of Twente (Netherlands). The main purpose of the Laboratory is to study the quantum properties of new superconductors and topologically protected materials, and also hybrid artificial systems based on these materials.

The laboratory is being equipped in close cooperation with Roditchev's and Cren's groups and it is expected that the facilities at both laboratories will complement one another.

Yu-Shiba-Rusinov states were predicted in the late 1960s by three physicists from China, the USSR, and Japan independently of one another. They suggested that magnetic atoms introduced into a superconductor must create special states of excitation around themselves - electron-hole standing waves named after their discoverers. Calculations show that areas of topological conductivity may form around these states, where the current is only able to flow in one direction. Until recently, however, it had not been possible to confirm this prediction experimentally.

For the last 20 years, scientists have been attempting to create quantum systems that will outperform traditional semiconductor-based computers, the development potential of which is now almost exhausted. A number of potential "candidate" systems to be used as a base to build the components of a quantum computer are currently being investigated. The main problem preventing the development of these computers is the high sensitivity of the nanoworld to external influences that destroy quantum states. One promising option is to use topologically protected electron states that are resistant to decoherence. Non-Abelian anyons may be perfect for this; they are not negative ions, but rather special excitations in two-dimensional quantum systems in a magnetic field.

The theory predicts that such non-Abelian anyons may occur in a two-dimensional "liquid" of electrons in a superconductor under the influence of a local magnetic field. The electron liquid thus becomes degenerate, i.e. the electrons can have different states at the same energy level. The superposition of several anyons cannot be affected without moving them, therefore they are completely protected from disturbances.

Media Contact

V. Roizen
roizen@phystech.edu
7-926-857-8141

 @phystech

http://mipt.ru/en/ 

V. Roizen | EurekAlert!

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>