Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What are these nanostars in 2-D superconductor supposed to mean?


Physicists from France and Russia have discovered magnetic disturbances in 2-D superconductor layer, resembling little oscillating stars; these star-like excitations are caused by a single magnetic atom put into the layer of superconducting material

Physicists from France and Russia have discovered magnetic disturbances in 2D superconductor layer, resembling little oscillating stars. These star-like excitations are caused by a single magnetic atom put into the layer of superconducting material.


Credit: MIPT

What they mean is that now the Yu-Shibo-Rusinov chains are proved to exist not only in theory. Moreover, it was found out that in the two-dimensional systems the magnetic disturbances spread on longer distances and seem to be more sustainable - which brings us a step closer towards the long-awaited quantum computers. The results were published in Nature Physics this week.

According to one of the study's co-authors from MIPT, the observed effect looks like magnetic "nanostars in the superconducting univers"; building constellations of them can be used in quantum electronics.

Physicists from France and Russia have discovered that the magnetic atoms in a two-dimensional layered superconductor create electronic disturbances that look like oscillating "nanostars". A "constellation" of these disturbances could be used in quantum electronics. The results of the study have been published in the prestigious scientific journal Nature Physics.

Prof. Dmitri Roditchev from the Superior School of Industrial Physics and Chemistry (ESPCI ParisTech, Paris), Gerbold Ménard,Dr. Christophe Brun, Dr. Tristan Cren from the Institute of Nanosciences of Paris at Sorbonne University, Dr. Vasily Stolyarov from the Laboratory of Topological Quantum Phenomena in Superconducting Systems at MIPT, and their colleagues from Paris-Saclay University studied the emergence of Yu-Shiba-Rusinov (YSR) states bound around single magnetic atoms embedded in a two-dimensional superconductor.

YSR states were theoretically predicted in the 1960s, but very few evidences for them have been experimentally revealed till now. In the present work it was found that in two-dimensional systems, magnetic excitations extend over a greater distance as compared to ordinary three-dimensional superconductors, and the emergent YSR quantum states are more stable, which makes them more suitable for developing a new generation of quantum electronics.

A crystal lattice of a layered superconducting material -niobium diselenide - was used in the tests. With an ultra-low-temperature scanning tunnelling microscope built by Roditchev, the researchers were able to observe , for the first time, YSR states around single magnetic atoms of iron. "We have demonstrated that the use of two-dimensional superconductors instead of the three dimensional ones results in an increase in the spatial extension of YSR states for several dozen nanometres, i.e. ten times further than in "normal" three-dimensional superconductors.

And the area of excitation was shaped like a six-fold electronic "star" with its rays extending along the axis of the crystal lattice of niobium diselenide. The observed "stars" are more stable and more suitable to creating new topologically protected states. Non-Abelian anyons can be collected from the YSR state chains, and can then be used as elements in quantum computers of the future," says Vasily Stolyarov, a co-author of the study and the head of the Laboratory of Topological Quantum Phenomena in Superconducting Systems at MIPT.

The experiments described in the article were conducted in Paris. Work is underway at MIPT's Laboratory of Topological Quantum Phenomena in Superconducting Systems to create the experimental conditions necessary to obtain such high quality results. The Laboratory was set up in 2014 using funds from a mega grant awarded to Alexander Golubov, a professor at the University of Twente (Netherlands). The main purpose of the Laboratory is to study the quantum properties of new superconductors and topologically protected materials, and also hybrid artificial systems based on these materials.

The laboratory is being equipped in close cooperation with Roditchev's and Cren's groups and it is expected that the facilities at both laboratories will complement one another.

Yu-Shiba-Rusinov states were predicted in the late 1960s by three physicists from China, the USSR, and Japan independently of one another. They suggested that magnetic atoms introduced into a superconductor must create special states of excitation around themselves - electron-hole standing waves named after their discoverers. Calculations show that areas of topological conductivity may form around these states, where the current is only able to flow in one direction. Until recently, however, it had not been possible to confirm this prediction experimentally.

For the last 20 years, scientists have been attempting to create quantum systems that will outperform traditional semiconductor-based computers, the development potential of which is now almost exhausted. A number of potential "candidate" systems to be used as a base to build the components of a quantum computer are currently being investigated. The main problem preventing the development of these computers is the high sensitivity of the nanoworld to external influences that destroy quantum states. One promising option is to use topologically protected electron states that are resistant to decoherence. Non-Abelian anyons may be perfect for this; they are not negative ions, but rather special excitations in two-dimensional quantum systems in a magnetic field.

The theory predicts that such non-Abelian anyons may occur in a two-dimensional "liquid" of electrons in a superconductor under the influence of a local magnetic field. The electron liquid thus becomes degenerate, i.e. the electrons can have different states at the same energy level. The superposition of several anyons cannot be affected without moving them, therefore they are completely protected from disturbances.

Media Contact

V. Roizen


V. Roizen | EurekAlert!

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>