Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves, folds and plastic flow: detecting the first signs of wear on metal surfaces

16.12.2014

A team of scientists from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg shows which wear mechanisms take place on metal surfaces before the actual wear becomes apparent. These latest findings from the Fraunhofer IWM will be presented in the current issue of Physical Review Applied. Understanding such mechanisms is the first step to minimizing friction and wear.

A great deal of scientific research has been carried out on minimizing wear in metal-based systems. Most of this work focused on the phenomenological level. Low-wear metal surfaces will, however, only be achieved if one has a fundamental understanding of the processes involved in friction at the atomic level.


Chip created on the surface of polycrystalline copper after scratching with a hard tip: simulation and experiment.

© Fraunhofer IWM

A team of expert scientists led by Prof. Dr. Michael Moseler and Prof. Dr. Peter Gumbsch at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg has carried out a large-scale atomistic material 3D computer simulation and succeeded in visualizing the nanoscale mechanisms involved in the friction process on a polycrystalline metal surface before the wear actually becomes visible.

In order to reduce friction and wear, one must cope with these mechanisms. Experiments carried out by a group headed by Martin Dienwiebel from the Microtribology Center µTC confirm the IWM’s computer simulation findings. The Fraunhofer IWM scientists are presenting their results in the current issue of Physical Review Applied.

The Institute for Applied Materials at the KIT Karlsruhe, Robert Bosch GmbH and the Institute for Physics at the University of Freiburg were also involved in the project. The researchers were inspired to carry out their simulation by an experiment at the Center for Materials Processing and Tribology at Purdue University, West Lafayette, Indiana [N.K. Sundaram et al., Phys. Rev. Lett. 109, 1065001 (2012)].

In this experiment, the scientists from Purdue scratched a copper surface using a hard tip and observed how this created a “wave” of folded copper ahead of the tip. This demonstrated that the metal was subject to plastic deformation flow, which can either appear laminar or turbulent, as in liquids. The Fraunhofer IWM researchers went one step further: they investigated and assessed the plastic flow at the atomic level and made some interesting discoveries.

Crystal grain orientation plays an important role

The Fraunhofer IWM performed a virtual, nanoscale re-enactment of the American experiment using computer software to create a simulation based on 15 million copper atoms. “On an experimental level, an analogy to the Kelvin-Helmholtz instability in fluids was quickly established to describe what was going on,” says Michael Moseler, but in the light of the Fraunhofer IWM’s findings this hydrodynamic picture is no longer appropriate.

Instead, the computer simulation showed that different grain orientations in the polycrystalline metal structure are responsible for the folds and swirls. The simulation made it possible to see each individual grain and proved that some grains yield readily while others resist the abrasive pressure, depending on crystal orientation. “The folds therefore always occur at the grain boundary,“ Moseler goes on to explain. One can also see that the grains can deform to a different extent and can join together to form larger grains.

Folds and impurities in the material create lamellar wear particles

By coloring the atomic layers of the metal surface differently, the scientists at the Fraunhofer IWM could also illustrate how the shearing dynamics cause atoms from the surface to penetrate deep into the material. In a second step, the researchers simulated the tip passing back over the metal chip, thus mimicking the actual dynamics in an oscillating tribological contact. The previously generated folds proceeded to lie down on the material as lamellae. An interesting aspect here is that this process embeds impurities, such as oxides, from the metal surface between the lamellae. “It is very similar to puff pastry!“ explains Moseler. The impurities make the metal instable and explain why lamellar wear particles are produced during the wear process. “Previously, one had assumed it was due to material fatigue,“ says Moseler.

“We have shown that grains at the surface react in different ways,“ says the Fraunhofer IWM’s Prof. Dr. Peter Gumbsch, adding “in our subsequent research work, we will focus on establishing the ideal grain orientation that prevents folds from even forming, keeping potential applications in mind.“ Mechanical surface treatment or targeted doping to influence grain boundaries are possible means of establishing this ideal grain orientation. The Fraunhofer IWM computer simulation is based on copper, but can be translated to many other metals. According to Gumbsch, “our findings can be used by development engineers, to establish design guidelines that make it possible to precisely establish a grain structure which meets the mechanical requirements for metals that are subject to tribological loads.”

Ref: Nils Beckmann, Pedro A. Romero, Dominik Linsler, Martin Dienwiebel, Ulrich Stolz, Michael Moseler, Peter Gumbsch, Origins of folding instabilities on polycrystalline metal surfaces, Phys. Rev. Applied 2, 064004 (2014)

caption long version: Chip created on the surface of polycrystalline copper after scratching with a hard tip. The top image is the result of a molecular dynamic 3D computer simulation based on 15 million atoms. The colors represent the initial position of the atoms before scratching. Red areas were originally on the surface, while blue zones were previously deeper down. One can clearly see the folds, which can be explained by the different orientation of the crystals. The results of the simulation were confirmed by the experiment (lower image): one can also see folds and lamellar zones here.

Weitere Informationen:

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.2.064004 - link to article
http://www.en.iwm.fraunhofer.de/press-events-publications/details/id/959/ - link to press realease

Thomas Götz | Fraunhofer-Institut für Werkstoffmechanik IWM

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>