Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water ice renders short-lived molecule sustainable

11.02.2015

RESOLV: Bochum-based researchers test effective new method

'Antiaromatic compounds' is what chemists call a class of ring molecules which are extremely instable -- the opposite of the highly stable aromatic molecules. Because they exist for mere split seconds, they can only be detected by extremely demanding, ultra fast methods.

Together with colleagues from Max Planck Institute for Coal Research in Mulheim, researchers from the Cluster of Excellence RESOLV at Ruhr-Universitat Bochum have succeeded in isolating the antiaromatic fluorenyl cation at extremely low temperatures in water ice.

Thus, they were able to conduct a spectroscopic analysis for the very first time. Their report is published in Angewandte Chemie.

Fundamental concept difficult to verify

The concept of "aromaticity" is fundamentally important in chemistry, and it can be found in every textbook and in every introductory lecture in Organic Chemistry. "Aromatic" is the name given to unsaturated ring molecules that are significantly more stable than expected. The term aromatic refers to the scent of the first aromatic compound that was ever discovered and it is, for example, an element of the trade name ARAL = "Aromaten und Aliphaten".

The theoretical concept of "aromaticity" was verified by the fact that the reverse effect does also exist: i.e. "antiaromaticity", which results in a destabilisation of molecules. "The problem with this concept is that, in accordance with this theory, antiaromatic compounds are extremely instable and cannot be simply synthesized and analysed," explains Prof Dr Wolfram Sander from RESOLV.

Staggeringly simple in conceptual terms

Under the umbrella of the Cluster of Excellence, Sander and his colleagues have now researched in what way charged, highly reactive molecules can be stabilised using water as a solvent at extremely low temperatures. Together with a theory group at MPI for Coal Research in Mülheim, an experimental group at the Department of Chemistry and Biochemistry at RUB successfully isolated the long searched-for antiaromatic fluorenyl cation, a prototype of the concept of antiaromaticity.

For this purpose, they isolated that molecule in a matrix of water at the extremely low temperature of three Kelvin - only three degrees centigrade above absolute zero. "Under these conditions, this molecule is entirely stable and can be analysed using standard spectroscopy," as Wolfram Sander elaborates the result.

At room temperature, conversely, it demonstrates its extreme instability: it is gone within a mere five picoseconds (that is 0.000 000 000 005 seconds). "In this time even light progresses only as far as 1.5 millimetres," illustrates the researcher. "This demonstrates neatly the effectiveness of this conceptually staggeringly simple new method for stabilising reactive ions."

Title catalogue

Paolo Costa, Iris Trosien, Miguel Fernandez-Oliva, Elsa Sanchez-Garcia and Wolfram Sander: The Fluorenyl Cation. In: Angewandte Chemie, DOI: 10.1002/ange.201411234, http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3757/earlyview

Media Contact

Wolfram Sander
wolfram.sander@rub.de
49-234-322-4593

 @ruhrunibochum

http://www.ruhr-uni-bochum.de 

Wolfram Sander | EurekAlert!

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>