Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water ice renders short-lived molecule sustainable

11.02.2015

RESOLV: Bochum-based researchers test effective new method

'Antiaromatic compounds' is what chemists call a class of ring molecules which are extremely instable -- the opposite of the highly stable aromatic molecules. Because they exist for mere split seconds, they can only be detected by extremely demanding, ultra fast methods.

Together with colleagues from Max Planck Institute for Coal Research in Mulheim, researchers from the Cluster of Excellence RESOLV at Ruhr-Universitat Bochum have succeeded in isolating the antiaromatic fluorenyl cation at extremely low temperatures in water ice.

Thus, they were able to conduct a spectroscopic analysis for the very first time. Their report is published in Angewandte Chemie.

Fundamental concept difficult to verify

The concept of "aromaticity" is fundamentally important in chemistry, and it can be found in every textbook and in every introductory lecture in Organic Chemistry. "Aromatic" is the name given to unsaturated ring molecules that are significantly more stable than expected. The term aromatic refers to the scent of the first aromatic compound that was ever discovered and it is, for example, an element of the trade name ARAL = "Aromaten und Aliphaten".

The theoretical concept of "aromaticity" was verified by the fact that the reverse effect does also exist: i.e. "antiaromaticity", which results in a destabilisation of molecules. "The problem with this concept is that, in accordance with this theory, antiaromatic compounds are extremely instable and cannot be simply synthesized and analysed," explains Prof Dr Wolfram Sander from RESOLV.

Staggeringly simple in conceptual terms

Under the umbrella of the Cluster of Excellence, Sander and his colleagues have now researched in what way charged, highly reactive molecules can be stabilised using water as a solvent at extremely low temperatures. Together with a theory group at MPI for Coal Research in Mülheim, an experimental group at the Department of Chemistry and Biochemistry at RUB successfully isolated the long searched-for antiaromatic fluorenyl cation, a prototype of the concept of antiaromaticity.

For this purpose, they isolated that molecule in a matrix of water at the extremely low temperature of three Kelvin - only three degrees centigrade above absolute zero. "Under these conditions, this molecule is entirely stable and can be analysed using standard spectroscopy," as Wolfram Sander elaborates the result.

At room temperature, conversely, it demonstrates its extreme instability: it is gone within a mere five picoseconds (that is 0.000 000 000 005 seconds). "In this time even light progresses only as far as 1.5 millimetres," illustrates the researcher. "This demonstrates neatly the effectiveness of this conceptually staggeringly simple new method for stabilising reactive ions."

Title catalogue

Paolo Costa, Iris Trosien, Miguel Fernandez-Oliva, Elsa Sanchez-Garcia and Wolfram Sander: The Fluorenyl Cation. In: Angewandte Chemie, DOI: 10.1002/ange.201411234, http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3757/earlyview

Media Contact

Wolfram Sander
wolfram.sander@rub.de
49-234-322-4593

 @ruhrunibochum

http://www.ruhr-uni-bochum.de 

Wolfram Sander | EurekAlert!

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>