Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water ice renders short-lived molecule sustainable

11.02.2015

RESOLV: Bochum-based researchers test effective new method

'Antiaromatic compounds' is what chemists call a class of ring molecules which are extremely instable -- the opposite of the highly stable aromatic molecules. Because they exist for mere split seconds, they can only be detected by extremely demanding, ultra fast methods.

Together with colleagues from Max Planck Institute for Coal Research in Mulheim, researchers from the Cluster of Excellence RESOLV at Ruhr-Universitat Bochum have succeeded in isolating the antiaromatic fluorenyl cation at extremely low temperatures in water ice.

Thus, they were able to conduct a spectroscopic analysis for the very first time. Their report is published in Angewandte Chemie.

Fundamental concept difficult to verify

The concept of "aromaticity" is fundamentally important in chemistry, and it can be found in every textbook and in every introductory lecture in Organic Chemistry. "Aromatic" is the name given to unsaturated ring molecules that are significantly more stable than expected. The term aromatic refers to the scent of the first aromatic compound that was ever discovered and it is, for example, an element of the trade name ARAL = "Aromaten und Aliphaten".

The theoretical concept of "aromaticity" was verified by the fact that the reverse effect does also exist: i.e. "antiaromaticity", which results in a destabilisation of molecules. "The problem with this concept is that, in accordance with this theory, antiaromatic compounds are extremely instable and cannot be simply synthesized and analysed," explains Prof Dr Wolfram Sander from RESOLV.

Staggeringly simple in conceptual terms

Under the umbrella of the Cluster of Excellence, Sander and his colleagues have now researched in what way charged, highly reactive molecules can be stabilised using water as a solvent at extremely low temperatures. Together with a theory group at MPI for Coal Research in Mülheim, an experimental group at the Department of Chemistry and Biochemistry at RUB successfully isolated the long searched-for antiaromatic fluorenyl cation, a prototype of the concept of antiaromaticity.

For this purpose, they isolated that molecule in a matrix of water at the extremely low temperature of three Kelvin - only three degrees centigrade above absolute zero. "Under these conditions, this molecule is entirely stable and can be analysed using standard spectroscopy," as Wolfram Sander elaborates the result.

At room temperature, conversely, it demonstrates its extreme instability: it is gone within a mere five picoseconds (that is 0.000 000 000 005 seconds). "In this time even light progresses only as far as 1.5 millimetres," illustrates the researcher. "This demonstrates neatly the effectiveness of this conceptually staggeringly simple new method for stabilising reactive ions."

Title catalogue

Paolo Costa, Iris Trosien, Miguel Fernandez-Oliva, Elsa Sanchez-Garcia and Wolfram Sander: The Fluorenyl Cation. In: Angewandte Chemie, DOI: 10.1002/ange.201411234, http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3757/earlyview

Media Contact

Wolfram Sander
wolfram.sander@rub.de
49-234-322-4593

 @ruhrunibochum

http://www.ruhr-uni-bochum.de 

Wolfram Sander | EurekAlert!

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>