Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UO-industry collaboration points to improved nanomaterials

21.11.2014

University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices

A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of University of Oregon and industry researchers.


University of Oregon doctoral student Christian Gervasi, left, and Thomas Allen of VoxtelNano led a university-industry collaboration to create atomic-scale maps of the density of states in individual nanocrystals with a specially designed microscope. The maps promise a route to next-generation solar cells.

Credit: University of Oregon

To increase light-harvesting efficiency of solar cells beyond silicon's limit of about 29 percent, manufacturers have used layers of chemically synthesized semiconductor nanocrystals. Properties of quantum dots that are produced are manipulated by controlling the synthetic process and surface chemical structure.

This process, however, creates imperfections at the surface-forming trap states that limit device performance. Until recently, improvements in production quality have relied on feedback provided by traditional characterization techniques that probe average properties of large numbers of quantum dots.

"We want to use these materials in real devices, but they are not yet optimized," said co-author Christian F. Gervasi, a UO doctoral student.

In their study, detailed in the Journal of Physical Chemistry Letters, researchers investigated electronic states of lead sulfide nanocrystals. By using a specially designed scanning tunneling microscope, researchers created atomic-scale maps of the density of states in individual nanocrystals. This allowed them to pinpoint the energies and localization of charge traps associated with defects in the nanocrystal surface structure that are detrimental to electron propagation.

The microscope was designed in the lab of co-author George V. Nazin, a professor in the UO Department of Chemistry and Biochemistry. Its use was described in a previous paper in the same journal, in which Nazin's lab members were able to visualize the internal structures of electronic waves trapped by external electrostatic charges in carbon nanotubes.

"This technology is really cool," said Peter Palomaki, senior scientist for Voxtel Nanophotonics and co-author on the new paper. "When you really dig down into the science at a very fundamental level, this problem has always been an open-ended question. This paper is just the tip of the iceberg in terms of being able to understand what's going on."

The insight, he said, should help manufacturers tweak their synthesis of nanocrystals used in a variety of electronic devices. Co-author Thomas Allen, also a senior scientist at Voxtel, agreed. The project began after Allen heard Gervasi and Nazin discussing the microscope's capabilities.

"We wanted to see what the microscope could accomplish, and it turns out that it gives us a lot of information about the trap states and the depths of trap states in our quantum dots," said Allen, who joined Voxtel after completing the Industrial Internship Program in the UO's Materials Science Institute. "The information will help us fine-tune the ligand chemistry to make better devices for photovoltaics, detectors and sensors."

The trap states seen by the microscope in this project may explain why nanoparticle-based solar cells have not yet been commercialized, Nazin said.

"Nanoparticles are not always stable. It is a fundamental problem. When you synthesize something at this scale you don't necessarily get the same structure for all of the quantum dots. Working at the atomic scale can produce large variations in the electronic states. Our tool allows us to see these states directly and allow us to provide feedback on the materials."

Sony Corp. supported the research. Quantum dots were synthesized by VoxtelNanophotonics, a division of Voxtel Inc., which has research space in the UO's Lorry Lokey Laboratories. The microscope, which was described in a recent paper in the journal Review of Scientific Instruments, was built with funding from the National Science Foundation (grant DMR-0960211).

Co-authors with Gervasi, Allen, Palomaki and Nazin are Dmitry A. Kislitsyn and Jason D. Hackley, both doctoral students, and Ryuichiro Maruyama, a courtesy research associate in the Nanoscale Open Research Initiative of the UO's Department of Chemistry and Biochemistry.

Sources: George Nazin, assistant professor of physical chemistry, Department of Chemistry and Biochemistry, 541-346-2017, gnazin@uoregon.edu; Christian Gervasi, doctoral student, 541-346-8150, cgervasi@uoregon.edu; Peter Palomaki, senior scientist, VoxtelNano, a division of Voxtel Inc., 541-346-8131, peterp@voxtel-inc.com; and Thomas Allen, senior scientist, VoxtelNano, a division of Voxtel Inc., 541-346-8131

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Previous release: Special UO microscope captures defects in nanotubes: http://uonews.uoregon.edu/archive/news-release/2014/10/special-uo-microscope-captures-defects-nanotubes

New paper abstract: http://pubs.acs.org/doi/abs/10.1021/jz5019465

About Voxtel: http://voxtel-inc.com/about-voxtel/

Nazin faculty page: http://chemistry.uoregon.edu/profile/gnazin/

Nazin Lab: https://wiki.uoregon.edu/display/Nazin/Nazin+Group

Department of Chemistry and Biochemistry: http://chemistry.uoregon.edu/

About the microscope: http://scitation.aip.org/content/aip/journal/rsi/85/10/10.1063/1.4897139

Jim Barlow | EurekAlert!

Further reports about: Biochemistry Nanocrystals materials nanomaterials quantum dots solar cells structure

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>