Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNIST unveils new fast-charging, high-energy electric-car battery technology

01.11.2017

An international team of researchers, affiliated with UNIST has presented a novel hydrogen isotope separation system based on a porous metal organic framework (MOF). The isolation of deuterium from a physico-chemically almost identical isotopic mixture has been a seminal challenge in modern separation technology. This MOF system, meanwhile, could efficiently separate and store deuterium inside the pores, exhibiting the highest selectivity of any system to date.

This breakthrough has been led by Professor Hoi Ri Moon in the School of Natural Science at UNIST, Professor Hyunchul Oh of Gyeongnam National University of Science and Technology (GNTECH) and Dr. Michael Hirscher of Max Planck Institute for Intelligent Systems (MPI). In addition, their work was featured on the cover of the October 2017 issue of the Journal of the American Chemical Society (JACS).


This is MOF-74-IM.

Credit: UNIST

In the study, the research team has reported a highly effective hydrogen isotope separation system based on porous metal?organic frameworks (MOFs) through a simple post-modification strategy. In addition, they also demonstrated that deuterium could be efficiently separated and stored inside the pores of the MOF-74-IM system by implementing two quantum-sieving effects in one system.

Deuterium (chemical symbol D or ²H) is a stable isotope of hydrogen with a nucleus containing one neutron and one proton. It is an irreplaceable raw material, widely employed in industrial and scientific research applications, ranging from isotope tracing to neutron scattering, as well as nuclear fusion. Besides being naturally present in very small amounts, deuterium constitutes 0.016% of total hydrogen occurring in nature.

In most cases, the desired degree of deuterium can be achieved by isolating deuterium from the isotopic mixture of hydrogen. However, because isotopes have similar physical and chemical properties, the process of filtering deuterium out of the natural isotopic mixture of hydrogen is at present both difficult and expensive. To solve this issue, scientists have designed a new MOF structure they hope could lead to new scientific tool that will selectively filter out deuterium, using the so-called "quantum sieving effect".

"You may think of the quantum sieving effect, as the method of separating deuterium and hydrogen from each other based on their quantum differences via a quantum sieve," says Jin Yeong Kim in the Combined M.S/Ph.D of Natural Science, the first author of the study. "It is like seperating rice from a mixture of rice with millet, using a sieve, according to their size."

There are two kinds of quantum sieving effects for the separation of deuterium to date, kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS). In the study, Professor Moon and her research team have suggested a new strategy of combining KQS and CAQS in one system to separate isotopic mixtures, thereby creating a synergistic effect.

Furthermore, this smart material system could only be tested experimentally because the research team, headed by Michael Hirscher, had designed an apparatus in which they can analyse the stored quantities of different isotope gases directly with the aid of a mass spectrometer at cryogenic conditions. Their newly-developed system has never been proposed, and thus, attracted much attention as the first technology that both KQS and CAQS effects take place simultaneously.

For that purpose, they chose the porous MOF-74-Ni, having high hydrogen adsorption enthalpies due to strong open metal sites, for CAQS functionality. Simultaneously, imidazole molecules (IM) were employed into the MOF-74-Ni channel as a diffusion barrier, effectively reducing the aperture size and repeatedly blocking H2 diffusion, resulting in the KQS effect. Therefore, deuterium could be diffused into the controlled pore channel faster than hydrogen, and preferentially bound to the strong binding sites of Ni2+ open metal sites. As an result, the separation factor exhibited ca. 26 (26 deuterium molecules separated per one hydrogen molecules) at 77 K.

"The selectivity of 26 is far superior to any previous systems with a maximum of 6 under the identical condition" says Hyunchul Oh, the corresponding author of the paper. He adds, "At 77 K, the separating process can be exploited with liquid nitrogen, which makes it more cost-effective than cryogenic distillation method operated with liquid helium at near 20 K,"

"Although the idea of separating deuterium using quantum sieving effects already exists, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D2 through direct selective separation studies using 1:1 D2/H2 mixtures." says Professor Moon, the corresponding author of the paper. She adds, "We anticipate that this strategy can provide new opportunities for the intelligent design of porous materials leading to the development of other highly efficient isotope and gas sepration systems."

###

This study has been supported by the National Research Foundation of Korea (NRF), funded by the Korean government (MSIP).

Journal Reference

Jin Yeong Kim, et. al., "Exploiting Diffusion Barrier and Chemical Affinity of Metal?Organic Frameworks for Efficient Hydrogen Isotope Separation", J. Am. Chem. Soc., (2017).

Public Relations Team
Ulsan National Institute of Science and Technology (UNIST)
T. 052-217-1223
M. 010-3880-6622
E. joohyeonheo@unist.ac.kr
Off: Main Administration Bldg. 201, Room 407

Researcher Profile

  1. Professor Hoi Ri Moon [corresponding author]
    Affiliation : School of Natural Science, UNIST
    82-52-217-2928
    hoirimoon@unist.ac.kr
  2. Professor Hyunchul Oh [co-corresponding author]
    Affiliation : Department of Energy Engineering, GNTECH
    82-55-751-3885
    oh@gntech.ac.kr
  3. Dr. Michael Hirscher [co-corresponding author]
    Affiliation : Max Planck Institute for Intelligent System, Germany
    49-711-689-1808
    hirscher@is.mpg.de
  4. Jin Yeong Kim [First Author]
    Affiliation : School of Natural Science, UNIST
    kjy892002@unist.ac.kr

Media Contact

JooHyeon Heo
joohyeonheo@unist.ac.kr
82-522-171-223

http://www.unist.ac.kr 

JooHyeon Heo | EurekAlert!

Further reports about: Affiliation Max Planck Institute UNIST battery technology isotope porous

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>