Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNIST unveils new fast-charging, high-energy electric-car battery technology

01.11.2017

An international team of researchers, affiliated with UNIST has presented a novel hydrogen isotope separation system based on a porous metal organic framework (MOF). The isolation of deuterium from a physico-chemically almost identical isotopic mixture has been a seminal challenge in modern separation technology. This MOF system, meanwhile, could efficiently separate and store deuterium inside the pores, exhibiting the highest selectivity of any system to date.

This breakthrough has been led by Professor Hoi Ri Moon in the School of Natural Science at UNIST, Professor Hyunchul Oh of Gyeongnam National University of Science and Technology (GNTECH) and Dr. Michael Hirscher of Max Planck Institute for Intelligent Systems (MPI). In addition, their work was featured on the cover of the October 2017 issue of the Journal of the American Chemical Society (JACS).


This is MOF-74-IM.

Credit: UNIST

In the study, the research team has reported a highly effective hydrogen isotope separation system based on porous metal?organic frameworks (MOFs) through a simple post-modification strategy. In addition, they also demonstrated that deuterium could be efficiently separated and stored inside the pores of the MOF-74-IM system by implementing two quantum-sieving effects in one system.

Deuterium (chemical symbol D or ²H) is a stable isotope of hydrogen with a nucleus containing one neutron and one proton. It is an irreplaceable raw material, widely employed in industrial and scientific research applications, ranging from isotope tracing to neutron scattering, as well as nuclear fusion. Besides being naturally present in very small amounts, deuterium constitutes 0.016% of total hydrogen occurring in nature.

In most cases, the desired degree of deuterium can be achieved by isolating deuterium from the isotopic mixture of hydrogen. However, because isotopes have similar physical and chemical properties, the process of filtering deuterium out of the natural isotopic mixture of hydrogen is at present both difficult and expensive. To solve this issue, scientists have designed a new MOF structure they hope could lead to new scientific tool that will selectively filter out deuterium, using the so-called "quantum sieving effect".

"You may think of the quantum sieving effect, as the method of separating deuterium and hydrogen from each other based on their quantum differences via a quantum sieve," says Jin Yeong Kim in the Combined M.S/Ph.D of Natural Science, the first author of the study. "It is like seperating rice from a mixture of rice with millet, using a sieve, according to their size."

There are two kinds of quantum sieving effects for the separation of deuterium to date, kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS). In the study, Professor Moon and her research team have suggested a new strategy of combining KQS and CAQS in one system to separate isotopic mixtures, thereby creating a synergistic effect.

Furthermore, this smart material system could only be tested experimentally because the research team, headed by Michael Hirscher, had designed an apparatus in which they can analyse the stored quantities of different isotope gases directly with the aid of a mass spectrometer at cryogenic conditions. Their newly-developed system has never been proposed, and thus, attracted much attention as the first technology that both KQS and CAQS effects take place simultaneously.

For that purpose, they chose the porous MOF-74-Ni, having high hydrogen adsorption enthalpies due to strong open metal sites, for CAQS functionality. Simultaneously, imidazole molecules (IM) were employed into the MOF-74-Ni channel as a diffusion barrier, effectively reducing the aperture size and repeatedly blocking H2 diffusion, resulting in the KQS effect. Therefore, deuterium could be diffused into the controlled pore channel faster than hydrogen, and preferentially bound to the strong binding sites of Ni2+ open metal sites. As an result, the separation factor exhibited ca. 26 (26 deuterium molecules separated per one hydrogen molecules) at 77 K.

"The selectivity of 26 is far superior to any previous systems with a maximum of 6 under the identical condition" says Hyunchul Oh, the corresponding author of the paper. He adds, "At 77 K, the separating process can be exploited with liquid nitrogen, which makes it more cost-effective than cryogenic distillation method operated with liquid helium at near 20 K,"

"Although the idea of separating deuterium using quantum sieving effects already exists, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D2 through direct selective separation studies using 1:1 D2/H2 mixtures." says Professor Moon, the corresponding author of the paper. She adds, "We anticipate that this strategy can provide new opportunities for the intelligent design of porous materials leading to the development of other highly efficient isotope and gas sepration systems."

###

This study has been supported by the National Research Foundation of Korea (NRF), funded by the Korean government (MSIP).

Journal Reference

Jin Yeong Kim, et. al., "Exploiting Diffusion Barrier and Chemical Affinity of Metal?Organic Frameworks for Efficient Hydrogen Isotope Separation", J. Am. Chem. Soc., (2017).

Public Relations Team
Ulsan National Institute of Science and Technology (UNIST)
T. 052-217-1223
M. 010-3880-6622
E. joohyeonheo@unist.ac.kr
Off: Main Administration Bldg. 201, Room 407

Researcher Profile

  1. Professor Hoi Ri Moon [corresponding author]
    Affiliation : School of Natural Science, UNIST
    82-52-217-2928
    hoirimoon@unist.ac.kr
  2. Professor Hyunchul Oh [co-corresponding author]
    Affiliation : Department of Energy Engineering, GNTECH
    82-55-751-3885
    oh@gntech.ac.kr
  3. Dr. Michael Hirscher [co-corresponding author]
    Affiliation : Max Planck Institute for Intelligent System, Germany
    49-711-689-1808
    hirscher@is.mpg.de
  4. Jin Yeong Kim [First Author]
    Affiliation : School of Natural Science, UNIST
    kjy892002@unist.ac.kr

Media Contact

JooHyeon Heo
joohyeonheo@unist.ac.kr
82-522-171-223

http://www.unist.ac.kr 

JooHyeon Heo | EurekAlert!

Further reports about: Affiliation Max Planck Institute UNIST battery technology isotope porous

More articles from Materials Sciences:

nachricht Less is more to produce top-notch 2D materials
20.11.2017 | The Agency for Science, Technology and Research (A*STAR)

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>