Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasensitive sensors made from boron-doped graphene

03.11.2015

Ultrasensitive gas sensors based on the infusion of boron atoms into graphene -- a tightly bound matrix of carbon atoms -- may soon be possible, according to an international team of researchers from six countries.

Graphene is known for its remarkable strength and ability to transport electrons at high speed, but it is also a highly sensitive gas sensor. With the addition of boron atoms, the boron graphene sensors were able to detect noxious gas molecules at extremely low concentrations, parts per billion in the case of nitrogen oxides and parts per million for ammonia, the two gases tested to date.


This is a drawing of boron doped graphine.

Credit: Torones, Penn State

This translates to a 27 times greater sensitivity to nitrogen oxides and 10,000 times greater sensitivity to ammonia compared to pristine graphene. The researchers believe these results, reported today (Nov. 2) in the Proceedings of the National Academy of Sciences, will open a path to high-performance sensors that can detect trace amounts of many other molecules.

"This is a project that we have been pursuing for the past four years, " said Mauricio Terrones, professor of physics, chemistry and materials science at Penn State. "We were previously able to dope graphene with atoms of nitrogen, but boron proved to be much more difficult. Once we were able to synthesize what we believed to be boron graphene, we collaborated with experts in the United States and around the world to confirm our research and test the properties of our material."

Both boron and nitrogen lie next to carbon on the periodic table, making their substitution feasible. But boron compounds are very air sensitive and decompose rapidly when exposed to the atmosphere. One-centimeter-square sheets were synthesized at Penn State in a one-of-a-kind bubbler-assisted chemical vapor deposition system. The result was large-area, high-quality boron-doped graphene sheets.

Once fabricated, the researchers sent boron graphene samples to researchers at the Honda Research Institute USA Inc., Columbus, Ohio, who tested the samples against their own highly sensitive gas sensors. Konstantin Novoselov's lab at the University of Manchester, UK, studied the transport mechanism of the sensors. Novoselov was the 2010 Nobel laureate in physics.

Theory collaborators in the U.S. and Belgium matched the scanning tunneling microscopy images to experimental images, confirmed the presence of the boron atoms in the graphene lattice and their effect when interacting with ammonia or nitrogen oxide molecules. Collaborators in Japan and China also contributed to the research.

"This multidisciplinary research paves a new avenue for further exploration of ultrasensitive gas sensors," said Avetik Harutyunyan, chief scientist and project leader at Honda Research Institute USA Inc. "Our approach combines novel nanomaterials with continuous ultraviolet light radiation in the sensor design that have been developed in our laboratory by lead researcher Dr. Gugang Chen in the last five years. We believe that further development of this technology may break the parts per quadrillion level of detection limit, which is up to six orders of magnitude better sensitivity than current state-of-the-art sensors."

These sensors can be used for labs and industries that use ammonia, a highly corrosive health hazard, or to detect nitrogen oxides, a dangerous atmospheric pollutant emitted from automobile tailpipes. In addition to detecting toxic or flammable gases, theoretical work indicates that boron-doped graphene could lead to improved lithium-ion batteries and field-effect transistors, the authors report.

###

The lead authors of the PNAS paper are Ruitao Lv, a former Penn State postdoctoral scholar in physics now at Tsinghua University, Beijing; Gugang Chen; Andrés Botello-Méndez, Catholic University of Louvain la-Neuve; and Amber McCreary, a graduate student in physics.

The National Natural Science Foundation of China; Multidisciplinary University Research awards from the U.S. Air Force Office of Scientific Research; Honda Research Institute USA Inc.; Europe's Graphene Flagship; Penn State's Center for Nanoscale Science, a National Science Foundation MRSEC, and Penn State's Materials Research Institute funded this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>