Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA chemists devise technology that could transform solar energy storage

19.06.2015

The materials in most of today's residential rooftop solar panels can store energy from the sun for only a few microseconds at a time. A new technology developed by chemists at UCLA is capable of storing solar energy for up to several weeks -- an advance that could change the way scientists think about designing solar cells.

The findings are published June 19 in the journal Science.

The new design is inspired by the way that plants generate energy through photosynthesis.


Pictured above are polymer donors and fullerene acceptors.

Courtesy of UCLA Chemistry

'Biology does a very good job of creating energy from sunlight,' said Sarah Tolbert, a UCLA professor of chemistry and one of the senior authors of the research. 'Plants do this through photosynthesis with extremely high efficiency.'

'In photosynthesis, plants that are exposed to sunlight use carefully organized nanoscale structures within their cells to rapidly separate charges -- pulling electrons away from the positively charged molecule that is left behind, and keeping positive and negative charges separated,' Tolbert said. 'That separation is the key to making the process so efficient.'

To capture energy from sunlight, conventional rooftop solar cells use silicon, a fairly expensive material. There is currently a big push to make lower-cost solar cells using plastics, rather than silicon, but today's plastic solar cells are relatively inefficient, in large part because the separated positive and negative electric charges often recombine before they can become electrical energy.

'Modern plastic solar cells don't have well-defined structures like plants do because we never knew how to make them before,' Tolbert said. 'But this new system pulls charges apart and keeps them separated for days, or even weeks. Once you make the right structure, you can vastly improve the retention of energy.'

The two components that make the UCLA-developed system work are a polymer donor and a nano-scale fullerene acceptor. The polymer donor absorbs sunlight and passes electrons to the fullerene acceptor; the process generates electrical energy.

The plastic materials, called organic photovoltaics, are typically organized like a plate of cooked pasta -- a disorganized mass of long, skinny polymer 'spaghetti' with random fullerene 'meatballs.' But this arrangement makes it difficult to get current out of the cell because the electrons sometimes hop back to the polymer spaghetti and are lost.

The UCLA technology arranges the elements more neatly -- like small bundles of uncooked spaghetti with precisely placed meatballs. Some fullerene meatballs are designed to sit inside the spaghetti bundles, but others are forced to stay on the outside. The fullerenes inside the structure take electrons from the polymers and toss them to the outside fullerene, which can effectively keep the electrons away from the polymer for weeks.

'When the charges never come back together, the system works far better,' said Benjamin Schwartz, a UCLA professor of chemistry and another senior co-author. 'This is the first time this has been shown using modern synthetic organic photovoltaic materials.'

In the new system, the materials self-assemble just by being placed in close proximity.

'We worked really hard to design something so we don't have to work very hard,' Tolbert said.

The new design is also more environmentally friendly than current technology, because the materials can assemble in water instead of more toxic organic solutions that are widely used today.

'Once you make the materials, you can dump them into water and they assemble into the appropriate structure because of the way the materials are designed,' Schwartz said. 'So there's no additional work.'

The researchers are already working on how to incorporate the technology into actual solar cells.

Yves Rubin, a UCLA professor of chemistry and another senior co-author of the study, led the team that created the uniquely designed molecules. 'We don't have these materials in a real device yet; this is all in solution,' he said. 'When we can put them together and make a closed circuit, then we will really be somewhere.'

For now, though, the UCLA research has proven that inexpensive photovoltaic materials can be organized in a way that greatly improves their ability to retain energy from sunlight.

###

Tolbert and Schwartz also are members of UCLA's California NanoSystems Institute. The study's other co-lead authors were UCLA graduate students Rachel Huber and Amy Ferreira. UCLA's Electron Imaging Center for NanoMachines imaged the assembled structure in a lab led by Hong Zhou.

The research was supported by the National Science Foundation (grant CHE-1112569) and by the Center for Molecularly Engineered Energy Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DE-AC06-76RLO-1830). Ferreira received support from the Clean Green IGERT (grant DGE-0903720).

Stuart Wolpert | EurekAlert!

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>