Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UChicago physicists first to see behavior of quantum materials in curved space

14.06.2016

Feat probes light-matter interplay, phenomena of potential technological interest

Light and matter are typically viewed as distinct entities that follow their own, unique rules. Matter has mass and typically exhibits interactions with other matter, while light is massless and does not interact with itself. Yet, wave-particle duality tells us that matter and light both act sometimes like particles, and sometimes like waves.


These three false-color images represent the quantum Hall state that University of Chicago physicists created by shining infrared laser light at specially configured mirrors. Achieving this state with light instead of matter was an important step in developing computing and other applications from quantum phenomena. In this quantum Hall state, particles of light mimic the orbital action of electrons in more standard experiments that involve powerful magnetic fields and ultra-cold conditions of near absolute zero (minus 459.6 degrees Fahrenheit).

Credit: Nathan Schine, Albert Ryou, Andrey Gromov, Ariel Sommer, and Jonathan Simon

Harnessing the shared wave nature of light and matter, researchers at the University of Chicago led by Neubauer Family Assistant Professor of Physics Jonathan Simon have used light to explore some of the most intriguing questions in the quantum mechanics of materials. The topic encompasses complex and non-intuitive phenomena that are often difficult to explain in non-technical language, but which carry important implications to specialists in the field.

In work published online June 6, 2016, in the journal Nature, Simon's group presents new experimental observations of a quantum Hall material near a singularity of curvature in space.

Quantum effects give rise to some of the most useful and promising properties of materials: they define standard units of measurement, give rise to superconductivity, and describe quantum computers. The quantum hall materials are one prominent example in which electrons are trapped in non-conducting circular orbits except at the edges of the material. There, electrons exhibit quantized resistance-free electrical conduction that is immune to disorder such as material impurities or surface defects.

Furthermore, electrons in quantum Hall materials do not transmit sound waves but instead have particle-like excitations, some of which are unlike any other particles ever discovered. Some of these materials also exhibit simultaneous quantum entanglement between millions of electrons, meaning that the electrons are so interconnected, the state of one instantly influences the state of all others. This combination of properties makes quantum Hall materials a promising platform for future quantum computation.

Researchers worldwide have spent the past 35 years delving into the mysteries of quantum Hall materials, but always in the same fundamental way. They use superconducting magnets to make very powerful magnetic fields and refrigerators to cool electronic samples to thousandths of a degree above absolute zero.

Trapping light...

In a new approach, Simon and his team demonstrated the creation of a quantum Hall material made up of light. "Using really good mirrors that are pointed at each other, we can trap light for a long time while it bounces back and forth many thousands of times between the mirrors," explained graduate student Nathan Schine.

In the UChicago experiment, photons travel back and forth between mirrors, while their side-to-side motion mimics the behavior of massive particles like electrons. To emulate a strong magnetic field, the researchers created a non-planar arrangement of four mirrors that makes the light twist as it completes a round trip. The twisting motion causes the photons to move like charged particles in a magnetic field, even though there is no actual magnet present.

"We make the photons spin, which leads to a force that has the same effect as a magnetic field," explained Schine. While the light is trapped, it behaves like the electrons in a quantum Hall material.

First, Simon's group demonstrated that they had a quantum Hall material of light. To do so, they shined infrared laser light at the mirrors. By varying the laser's frequency, Simon's team could map out precisely at which frequencies the laser was transmitted through the mirrors. These transmission frequencies, along with camera images of the transmitted light, gave a telltale signature of a quantum Hall state.

Next, the researchers took advantage of the precise control that advanced optical systems provide to place the photons in curved space, which has not been possible so far with electrons. In particular, they made the photons behave as if they resided on the surface of a cone.

...near a singularity

"We created a cone for light much like you might do by cutting a wedge of paper and taping the edges together," said postdoctoral fellow Ariel Sommer, also a co-author of the paper. "In this case, we imposed a three-fold symmetry on our light, which essentially divides the plane into three wedges and forces the light to repeat itself on each wedge."

The tip of a cone has infinite curvature--the singularity--so the researchers were able to study the effect of strong spatial curvature in a quantum Hall material. They observed that photons accumulated at the cone tip, confirming a previously untested theory of the quantum Hall effect in curved space.

Despite 20 years of interest, this is the first time an experiment has observed the behavior of quantum materials in curved space. "We are beginning to make our photons interact with each other," said Schine. "This opens up many possibilities, such as making crystalline or exotic quantum liquid states of light. We can then see how they respond to spatial curvature."

The researchers say this could be useful for characterizing a certain type of quantum computer that is built of quantum Hall materials.

"While quantum Hall materials were discovered in the eighties, they continue to reveal their fascinating secrets to this day," said Simon. "The final frontier is exploring the interplay of these beautiful materials with the curvature of space. That is what we've begun to explore with our photons."

Media Contact

Steve Koppes
skoppes@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu 

Steve Koppes | EurekAlert!

Further reports about: Electrons frequencies magnetic field photons waves

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>