Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Dimensional Metamaterial Surface Manipulates Light

16.01.2015

A single layer of metallic nanostructures has been designed, fabricated and tested by a team of Penn State electrical engineers that can provide exceptional capabilities for manipulating light. This engineered surface, which consists of a periodic array of strongly coupled nanorod resonators, could improve systems that perform optical characterization in scientific devices, such as ellipsometers; sensing, such as biosensing of proteins; or satellite communications.

“We have designed and fabricated a waveplate that can transform the polarization state of light,” said Zhi Hao Jiang, a postdoctoral fellow in electrical engineering and lead author of a recent paper in Scientific Reports explaining their invention. “Polarization is one of the most fundamental properties of light. For instance, if we transform linearly polarized light into circularly polarized light, this could be useful in optical communication and biosensing.”


Zhi Hao Jiang, Penn State

On the left, circularly polarized light is converted to a linearly polarized wave upon reflection in a metasurface-based quarter-wave plate. On the right, a top-view FESEM image of the fabricated nanostructure showing the nanorod array. (Bottom scale bar - 400 nm. Top scale bar – 100 nm)

Optical waveplates with broadband polarization conversion over a wide field of view are highly sought after. Conventional waveplates, made from multilayer stacks of materials such as quartz, have difficulty achieving both broadband and wide-angle conversion.

Thin waveplates have been demonstrated, but their efficiency was low, with an average power efficiency of less than 50 percent. The team’s nanofabricated waveplates achieved measured polarization conversion rates higher than 92 percent over more than an octave bandwidth with a wide field-of-view of around 40 degrees.

“In this paper, we demonstrated with simulation and experiment both quarter-waveplate and half-waveplate metasurfaces, which are thin artificial surfaces that operate both in the visible spectrum as well as in the near infrared,” said Jeremy Bossard, a postdoc who is a member of the team but not an author on the paper. “It also has a wide field of view, which means that if you illuminate the surface from a wide range of angles, it would still give the same reflective performance.”

As a component in an optical setup, the nanostructured waveplate offers a thinner form factor and reduced weight for space applications, a wider field of view, which can reduce the number of optical components in a system, and can achieve very wide broadband functionality in the visible to near infrared wavelength range. This represents a new state-of-the-art for optical meta-surface based devices and will enable other types of ultrathin highly efficient optical components, the authors said.

The waveplate was designed by Jiang using global optimization methods. It was fabricated in the Penn State Nanofabrication Laboratory by doctoral student Lan Lin, and characterized by doctoral student Ding Ma. Co-authors include Seokho Yun, a former postdoctoral scholar in the Penn State Electrical Engineering Department, Douglas H. Werner, John L. and Genevieve H. McCain Chair Professor of Electrical Engineering, Zhiwen Liu,professor of electrical engineering, and Theresa Mayer, Distinguished Professor of Electrical Engineering. The paper is titled “Broadband and Wide field-of-view Plasmonic Metasurface-enabled Waveplates.”

This work was supported by the National Science Foundation through Penn State’s Center for Nanoscale Science.

Contacts:
Douglas Werner dhw@psu.edu
Zhiwen Liu zliu@engr.psu.edu
Theresa Mayer tsm2@psu.edu

Walter Mills | newswise

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>