Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapped light orbits within an intriguing material

17.07.2015

Light becomes trapped as it orbits within tiny granules of a crystalline material that has increasingly intrigued physicists, a team led by University of California, San Diego, physics professor Michael Fogler has found.

Hexagonal boron nitride, stacked layers of boron and nitrogen atoms arranged in a hexagonal lattice, has recently been found to bend electromagnetic energy in unusual and potentially useful ways.


Patterns of orbiting light predicted for spheroids of hexagonal boron nitride illuminated with a dipole source just above their north poles. These are false-color plots of predicted hot spots of enhanced electrical fields. Magenta lines trace the periodic orbits on the surfaces set up by particular frequencies.

Credit: Fogler group, UC San Diego

Last year Fogler and colleagues demonstrated that light could be stored within nanoscale granules of hexagonal boron nitride. Now Fogler's research group has published a new paper in the journal Nano Letters that elaborates how this trapped light behaves inside the granules.

The particles of light, called phonon polaritons, disobey standard laws of reflection as they bounce through the granules, but their movement isn't random. Polariton rays propagate along paths at fixed angles with respect to the atomic structure of the material, Folger's team reports. That can lead to interesting resonances.

"The trajectories of the trapped polariton rays are very convoluted in most instances," Fogler said. "However, at certain 'magic' frequencies they can become simple closed orbits."

When that happens "hot spots" of strongly enhanced electrical fields can emerge. Fogler's group found those can form elaborate geometric patterns in granules of spheroidal shape.

The polaritons are not only particles but also waves that form interference patterns. When overlaid on the hot contours of enhanced electrical fields, these create strikingly beautiful images.

"They resemble Fabergé eggs, the gem-encrusted treasures of the Russian tsars," Fogler observed.

Beyond creating beautiful images, their analysis illustrates the way light is stored inside the material. The patterns and the magic frequencies are determined not by the size of the spheroid but its shape, that is, the ratio of its girth to length. The analysis revealed that a single parameter determines the fixed angle along which polariton rays propagate with respect to the surface of the spheroids.

Scientists are beginning to find practical uses for materials such as hexagonal boron nitride that manipulate light in usual ways. The theory this work informed could guide the development of applications such as nanoresonators for high-resolution color filtering and spectral imaging, hyperlenses for subdiffractional imaging, or infrared photon sources.

The analysis provides a theoretical explanation for earlier observations of trapped light. Fogler and colleagues suggest several experiments that could confirm their prediction of orbiting light using advanced optical techniques, some of which are underway, Fogler said. "The experimental quest to detect orbiting polaritons has already begun."

###

Additional authors include Zhiyuan Sun, a graduate student in Fogler's research group, Angel Guttiérrez-Rubio of the Spanish National Research Council (CSIC) who contributed to the project while a visiting scholar at UC San Diego, and Dimitri Basov, a professor of physics at UC San Diego. The UC Office of the President, U.S. Department of Energy, Spanish Ministry of Economy and Competitiveness, and European Research Council supported the work.

Media Contact

Susan Brown
sdbrown@ucsd.edu
858-246-0161

 @UCSanDiego

http://www.ucsd.edu 

Susan Brown | EurekAlert!

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>