Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapped light orbits within an intriguing material

17.07.2015

Light becomes trapped as it orbits within tiny granules of a crystalline material that has increasingly intrigued physicists, a team led by University of California, San Diego, physics professor Michael Fogler has found.

Hexagonal boron nitride, stacked layers of boron and nitrogen atoms arranged in a hexagonal lattice, has recently been found to bend electromagnetic energy in unusual and potentially useful ways.


Patterns of orbiting light predicted for spheroids of hexagonal boron nitride illuminated with a dipole source just above their north poles. These are false-color plots of predicted hot spots of enhanced electrical fields. Magenta lines trace the periodic orbits on the surfaces set up by particular frequencies.

Credit: Fogler group, UC San Diego

Last year Fogler and colleagues demonstrated that light could be stored within nanoscale granules of hexagonal boron nitride. Now Fogler's research group has published a new paper in the journal Nano Letters that elaborates how this trapped light behaves inside the granules.

The particles of light, called phonon polaritons, disobey standard laws of reflection as they bounce through the granules, but their movement isn't random. Polariton rays propagate along paths at fixed angles with respect to the atomic structure of the material, Folger's team reports. That can lead to interesting resonances.

"The trajectories of the trapped polariton rays are very convoluted in most instances," Fogler said. "However, at certain 'magic' frequencies they can become simple closed orbits."

When that happens "hot spots" of strongly enhanced electrical fields can emerge. Fogler's group found those can form elaborate geometric patterns in granules of spheroidal shape.

The polaritons are not only particles but also waves that form interference patterns. When overlaid on the hot contours of enhanced electrical fields, these create strikingly beautiful images.

"They resemble Fabergé eggs, the gem-encrusted treasures of the Russian tsars," Fogler observed.

Beyond creating beautiful images, their analysis illustrates the way light is stored inside the material. The patterns and the magic frequencies are determined not by the size of the spheroid but its shape, that is, the ratio of its girth to length. The analysis revealed that a single parameter determines the fixed angle along which polariton rays propagate with respect to the surface of the spheroids.

Scientists are beginning to find practical uses for materials such as hexagonal boron nitride that manipulate light in usual ways. The theory this work informed could guide the development of applications such as nanoresonators for high-resolution color filtering and spectral imaging, hyperlenses for subdiffractional imaging, or infrared photon sources.

The analysis provides a theoretical explanation for earlier observations of trapped light. Fogler and colleagues suggest several experiments that could confirm their prediction of orbiting light using advanced optical techniques, some of which are underway, Fogler said. "The experimental quest to detect orbiting polaritons has already begun."

###

Additional authors include Zhiyuan Sun, a graduate student in Fogler's research group, Angel Guttiérrez-Rubio of the Spanish National Research Council (CSIC) who contributed to the project while a visiting scholar at UC San Diego, and Dimitri Basov, a professor of physics at UC San Diego. The UC Office of the President, U.S. Department of Energy, Spanish Ministry of Economy and Competitiveness, and European Research Council supported the work.

Media Contact

Susan Brown
sdbrown@ucsd.edu
858-246-0161

 @UCSanDiego

http://www.ucsd.edu 

Susan Brown | EurekAlert!

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>