Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent metal films for smart phone, tablet and TV displays

16.12.2015

A new material that is both highly transparent and electrically conductive could make large screen displays, smart windows and even touch screens and solar cells more affordable and efficient, according to the Penn State materials scientists and engineers who discovered it.

Indium tin oxide, the transparent conductor that is currently used for more than 90 percent of the display market, has been the dominant material for the past 60 years. However, in the last decade, the price of indium has increased dramatically. Displays and touchscreen modules have become a main cost driver in smartphones and tablets, making up close to 40 percent of the cost.


This is a figure showing the crystal structure of strontium vanadate (orange) and calcium vanadate (blue). The red dots are oxygen atoms arranged in 8 octohedra surrounding a single strontium or calcium atom. Vanadium atoms can be seen inside each octahedron.

Credit: Lei Zhang, Penn State

While memory chips and processors get cheaper, displays get more expensive from generation to generation. Manufacturers have searched for a possible ITO replacement, but until now, nothing has matched ITO's combination of optical transparency, electrical conductivity and ease of fabrication.

A team led by Roman Engel-Herbert, assistant professor of materials science and engineering, reports today (Dec 15) online in Nature Materials a new design strategy that approaches the problem from a different angle. The researchers use thin -- 10 nanometer -- films of an unusual class of materials called correlated metals in which the electrons flow like a liquid.

While in most conventional metals, such as copper, gold, aluminum or silver, electrons flow like a gas, in correlated metals, such as strontium vanadate and calcium vanadate, they move like a liquid. According to the researchers, this electron flow produces high optical transparency along with high metal-like conductivity.

"We are trying to make metals transparent by changing the effective mass of their electrons," Engel-Herbert said. "We are doing this by choosing materials in which the electrostatic interaction between negatively charged electrons is very large compared to their kinetic energy. As a result of this strong electron correlation effect, electrons 'feel' each other and behave like a liquid rather than a gas of non-interacting particles. This electron liquid is still highly conductive, but when you shine light on it, it becomes less reflective, thus much more transparent."

To better understand how they achieved this fine balance between transparency and conductivity, Engel-Herbert and his team turned to a materials theory expert, Professor Karin Rabe of Rutgers University.

"We realized that we needed her help to put a number on how 'liquid' this electron liquid in strontium vanadate is," Engel-Herbert said.

Rabe helped the Penn State team put together all the theoretical and mathematical puzzle pieces they needed to build transparent conductors in the form of a correlated metal. Now that they understand the essential mechanism behind their discovery, the Penn State researchers are confident they will find many other correlated metals that behave like strontium vanadate and calcium vanadate.

Lei Zhang, lead author on the Nature Materials paper and a graduate student in Engel-Herbert's group, was the first to recognize what they had discovered.

"I came from Silicon Valley where I worked for two years as an engineer before I joined the group," said Zhang. "I was aware that there were many companies trying hard to optimize those ITO materials and looking for other possible replacements, but they had been studied for many decades and there just wasn't much room for improvement. When we made the electrical measurements on our correlated metals, I knew we had something that looked really good compared to standard ITO."

Currently indium costs around $750 per kilogram, whereas strontium vanadate and calcium vanadate are made from elements with orders of magnitude higher abundance in the earth's crust. Vanadium sells for around $25 a kilogram, less than 5 percent of the cost of indium, while strontium is even cheaper than vanadium.

"Our correlated metals work really well compared to ITO," said Engel-Herbert. "Now, the question is how to implement these new materials into a large-scale manufacturing process. From what we understand right now, there is no reason that strontium vanadate could not replace ITO in the same equipment currently used in industry."

Along with display technologies, Engel-Herbert and his group are excited about combining their new materials with a very promising type of solar cell that uses a class of materials called organic perovskites. Developed only within the last half dozen years, these materials outperform commercial silicon solar cells but require an inexpensive transparent conductor. Strontium vanadate, also a perovskite, has a compatible structure that makes this an interesting possibility for future inexpensive, high-efficiency solar cells.

Engel-Herbert and Zhang have applied for a patent on their technology.

###

Along with Zhang and Engel-Herbert, Hai-Tian Zhang, Craig Eaton, Yuanxia Zheng and Matthew Brahlek, all students or postdoctoral Fellows in Engel-Herbert's group, worked on this paper, "Correlated metals as transparent conductors." Others from Penn State and the Materials Research Institute on this project were Moses Chan, Evan Pugh professor of physics, and his postdoctoral Fellow, Weiwei Zhao; and Venkatraman Gopalan, professor of materials science and engineering and his student Lu Guo.

With Rabe was her student Yuanjun Zhou from Rutgers University. Anna Barnes, Hamna Haneef and associate professor Nikolas Podraza of Univesity of Toledo also worked on this project.

The Office of Naval Research, the National Science Foundation and the Department of Energy funded this work. Fabrication of the correlated metals was performed at the Materials Research Institute in the laboratory facilities of Penn State's Millennium Science Complex.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>