Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny diamonds could enable huge advances in nanotechnology

08.06.2016

UMD researchers develop a new method for pairing nanoscale diamonds with other nanomaterials

Nanomaterials have the potential to improve many next-generation technologies. They promise to speed up computer chips, increase the resolution of medical imaging devices and make electronics more energy efficient. But imbuing nanomaterials with the right properties can be time consuming and costly. A new, quick and inexpensive method for constructing diamond-based hybrid nanomaterials could soon launch the field forward.


This electron microscope image shows a hybrid nanoparticle consisting of a nanodiamond (roughly 50 nanometers wide) covered in smaller silver nanoparticles that enhance the diamond's optical properties.

Credit: Min Ouyang

University of Maryland researchers developed a method to build diamond-based hybrid nanoparticles in large quantities from the ground up, thereby circumventing many of the problems with current methods. The technique is described in the June 8, 2016 issue of the journal Nature Communications.

The process begins with tiny, nanoscale diamonds that contain a specific type of impurity: a single nitrogen atom where a carbon atom should be, with an empty space right next to it, resulting from a second missing carbon atom. This "nitrogen vacancy" impurity gives each diamond special optical and electromagnetic properties.

By attaching other materials to the diamond grains, such as metal particles or semiconducting materials known as "quantum dots," the researchers can create a variety of customizable hybrid nanoparticles, including nanoscale semiconductors and magnets with precisely tailored properties.

"If you pair one of these diamonds with silver or gold nanoparticles, the metal can enhance the nanodiamond's optical properties. If you couple the nanodiamond to a semiconducting quantum dot, the hybrid particle can transfer energy more efficiently," said Min Ouyang, an associate professor of physics at UMD and senior author on the study.

Evidence also suggests that a single nitrogen vacancy exhibits quantum physical properties and could behave as a quantum bit, or qubit, at room temperature, according to Ouyang. Qubits are the functional units of as-yet-elusive quantum computing technology, which may one day revolutionize the way humans store and process information. Nearly all qubits studied to date require ultra-cold temperatures to function properly.

A qubit that works at room temperature would represent a significant step forward, facilitating the integration of quantum circuits into industrial, commercial and consumer-level electronics. The new diamond-hybrid nanomaterials described in Nature Communications hold significant promise for enhancing the performance of nitrogen vacancies when used as qubits, Ouyang noted.

While such applications hold promise for the future, Ouyang and colleagues' main breakthrough is their method for constructing the hybrid nanoparticles. Although other researchers have paired nanodiamonds with complementary nanoparticles, such efforts relied on relatively imprecise methods, such as manually installing the diamonds and particles next to each other onto a larger surface one by one. These methods are costly, time consuming and introduce a host of complications, the researchers say.

"Our key innovation is that we can now reliably and efficiently produce these freestanding hybrid particles in large numbers," explained Ouyang, who also has appointments in the UMD Center for Nanophysics and Advanced Materials and the Maryland NanoCenter, with an affiliate professorship in the UMD Department of Materials Science and Engineering.

The method developed by Ouyang and his colleagues, UMD physics research associate Jianxiao Gong and physics graduate student Nathaniel Steinsultz, also enables precise control of the particles' properties, such as the composition and total number of non-diamond particles. The hybrid nanoparticles could speed the design of room-temperature qubits for quantum computers, brighter dyes for biomedical imaging, and highly sensitive magnetic and temperature sensors, to name a few examples.

"Hybrid materials often have unique properties that arise from interactions between the different components of the hybrid. This is particularly true in nanostructured materials where strong quantum mechanical interactions can occur," said Matthew Doty, an associate professor of materials science and engineering at the University of Delaware who was not involved with the study. "The UMD team's new method creates a unique opportunity for bulk production of tailored hybrid materials. I expect that this advance will enable a number of new approaches for sensing and diagnostic technologies."

The special properties of the nanodiamonds are determined by their nitrogen-vacancies, which cause defects in the diamond's crystal structure. Pure diamonds consist of an orderly lattice of carbon atoms and are completely transparent. However, pure diamonds are quite rare in natural diamond deposits; most have defects resulting from non-carbon impurities such as nitrogen, boron and phosphorus. Such defects create the subtle and desirable color variations seen in gemstone diamonds.

The nanoscale diamonds used in the study were created artificially, and have at least one nitrogen vacancy. This impurity results in an altered bond structure in the otherwise orderly carbon lattice. The altered bond is the source of the optical, electromagnetic and quantum physical properties that make the diamonds useful when paired with other nanomaterials.

Although the current study describes diamonds with nitrogen substitutions, Ouyang points out that the technique can be extended to other diamond impurities as well, each of which could open up new possibilities.

"A major strength of our technique is that it is broadly useful and can be applied to a variety of diamond types and paired with a variety of other nanomaterials," Ouyang explained. "It can also be scaled up fairly easily. We are interested in studying the basic physics further, but also moving toward specific applications. The potential for room-temperature quantum entanglement is particularly exciting and important."

###

The research paper, "Nanodiamond-Based Nanostructures for Coupling Nitrogen-Vacancy Centers to Metal Nanoparticles and Semiconductor Quantum Dots," Jianxiao Gong, Nathaniel Steinsultz and Min Ouyang, was published in the journal Nature Communications on June 8, 2016.

This work was supported by the United States Department of Energy (Award No. DESC0010833), the Office of Naval Research (Award No. N000141410328) and the National Science Foundation (DMR1307800). The content of this article does not necessarily reflect the views of these organizations.

Media Relations Contact:

Matthew Wright
301-405-9267
mewright@umd.edu
University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright
mewright@umd.edu
301-405-9267

 @UMDRightNow

http://www.newsdesk.umd.edu/ 

Matthew Wright | EurekAlert!

Further reports about: Nanoparticles diamonds nanomaterials nanoscale nitrogen

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>