Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tin follows zinc: stretchable ceramics made by flame technology

05.06.2015

Scientists at Kiel University have successfully been able to transfer the experience from furnace to laboratory while synthesizing nanoscale materials using simple and highly efficient flame technology. This “baking” of nanostructures has already been a great success using zinc oxide. The recent findings concentrate on tin oxide, which opens up a wide field of possible new applications. The material scientists published their latest research data in today’s issue (Friday, 5 June) of the renowned scientific journal Advanced Electronic Materials.

Synthesizing nanoscale materials takes place within high-tech laboratories, where scientists in full-body suits keep every grain of dust away from their sensitive innovations. However, scientists at Kiel University proved that this is not always necessary.


Just like wool made of fettucine: stretchable ceramic made from tin oxide shows the future of nanostructure growth.

Photo/Copyright: Claudia Eulitz, CAU

They have successfully been able to transfer the experience from furnace to laboratory while synthesizing nanoscale materials using simple and highly efficient flame technology.

This “baking” of nanostructures has already been a great success using zinc oxide. The recent findings concentrate on tin oxide, which opens up a wide field of possible new applications. The material scientists published their latest research data in today’s issue (Friday, 5 June) of the renowned scientific journal Advanced Electronic Materials.

Metal oxides in bulk form are generally brittle, which limits their desired utilizations. Their one-dimensional (1D) structures, such as belt-like nanostructures, exhibit much more application potential because of their high surface to volume ratio. This ratio induces extraordinary physical and chemical properties, including a high degree of bendability.

“However, 1D nanostructures are still difficult to use, because integrating them in real devices is a challenging task. To overcome this issue, we have developed three-dimensional (3D) macroscopic material from 1D tin oxide belt-like nanostructures. The resulting ceramic networks exhibit most of the nanoscale properties, including flexibility.

It can therefore be freely utilized for any desired application. We are very pleased that our recently introduced flame transport synthesis method on the basis of zinc oxide now enables the simple synthesis of interconnected 3D networks from tin oxide”, says Dr Yogendra Kumar Mishra, group leader of the working group “Functional Nanomaterials” at Kiel University, and main author of the study.

“The fascinating part is the structure of the single belt-like nanostructures delivered by this synthesis on the basis of tin oxide crystal structure. In contrast to ceramic produced with zinc oxide, which leads to very short tetrapod structures, tin oxide gives long, flat structures. They are just like fettucine”, compares Professor Rainer Adelung, Chairperson of the Functional Nanomaterials group.

“And these long flat noodles grow together in a very specific way: In the oven used for the synthesis, temperatures stay just below the melting point of tin oxide. Thus, the noodles find specific interconnection points by kinetics instead of thermodynamics.

Each junction is forced into a well-defined angle following strict geometric principles, which are based on so-called twinning defects, as further confirmed by simulation studies”, adds Professor Lorenz Kienle, Chairperson of the Synthesis and Real Structure group. The structural design of the tin oxide 3D network, meaning the grown-together noodles, was investigated in detail using transmission electron microscopy.

“The 3D networks from tin oxide exhibit interesting features, such as electrically conducting, high temperature stable, very soft and stretchable architecture, and could thus be interesting for several technological applications”, says Dr Mishra. For example, a portable electronic sensing device has already been fabricated. And, according to Mishra, it demonstrates significant potential for UV light or gas sensing applications.

“Until now, we have tested sensing applications. Further potential applications could also be flexible and stretchable electronic devices, luminescent actuators, batteries, smart cloths or sacrificial templates for the growth of new materials.” This work has been performed in co-operation with Professor Ion Tiginyanu and his team members from the Technical University of Moldova, Moldova.

The three Kiel scientists know: “Development of such 3D network materials from tin oxide, with geometry determining defects made by flame transport synthesis at Kiel University is a very interesting step forward into the future of nanostructure growth and applications.”

Original Publication:
Three dimensional SnO2 nanowire networks for multifunctional applications: From high temperature stretchable ceramics to ultraresponsive sensors; Ingo Paulowicz, Viktor Hrkac, Sören Kaps, Vasilii Cretu, Oleg Lupan, Tudor Braniste, Viola Duppel, Ion Tiginyanu, Lorenz Kienle, Rainer Adelung, Yogendra Kumar Mishra, Advanced Electronic Materials; DOI: 10.1002/ aelm.201500081
http://onlinelibrary.wiley.com/doi/10.1002/aelm.201500081/abstract

Pictures can be downloaded at:
http://www.uni-kiel.de/download/pm/2015/2015-198-1.jpg
Yogendra Kumar Mishra presents the stretchable ceramic made from tin oxide.
Photo/Copyright: Claudia Eulitz, CAU

http://www.uni-kiel.de/download/pm/2015/2015-198-2.jpg
From left: Lorenz Kienle, Rainer Adelung and Yogendra Mishra in front of the furnace used for the flame transport synthesis.
Photo/Copyright: Claudia Eulitz, CAU

http://www.uni-kiel.de/download/pm/2015/2015-198-3.jpg
Just like wool made of fettucine: stretchable ceramic made from tin oxide shows the future of nanostructure growth.
Photo/Copyright: Claudia Eulitz, CAU

http://www.uni-kiel.de/download/pm/2015/2015-198-4.png
Pasta like SnO2 structures vibrating under the electron beam of the electron microscope.
Credit: Mishra/Wiley-VCH

http://www.uni-kiel.de/download/pm/2015/2015-198-5.png
Interpenetration point of two crossing SnO2 structures in defined crystallographic directions.
Credit: Mishra/Wiley-VCH

http://www.uni-kiel.de/download/pm/2015/2015-198-6.jpg
SnO2 nanostructures.
Credit: Rainer Adelung

Contact:
Dr Yogendra Kumar Mishra
Funktionale Nanomaterialien
Institut für Materialwissenschaft
Christian-Albrechts-Universität zu Kiel
Tel.: +49 (0)431/880 6183
Email: ykm@tf.uni-kiel.de

Prof. Dr Rainer Adelung
Funktionale Nanomaterialien
Institut für Materialwissenschaft
Christian-Albrechts-Universität zu Kiel
Tel.: +49 (0)431/880 6116
Email: ra@tf.uni-kiel.de

Prof. Dr Lorenz Kienle
Synthese und Realstruktur
Institut für Materialwissenschaft
Christian-Albrechts-Universität zu Kiel
Tel.: +49 (0)431/880 6196
Email: lk@tf.uni-kiel.de

Details, only a millionth fraction of a millimetre small: This is what Kiel University's research focus "Kiel Nano, Surface and Interface Science" (KiNSIS) is busy investigating. In the nano cosmos, other than in our macroscopic world, the rules of quantum physics apply. In KiNSIS, material scientists, chemists, physicists, biologists, electrical engineers, information scientists, food scientists and physicians work closely together. They aim at understanding systems in the nano dimension and turning knowledge into applications. Molecular machines, novel sensors, bionic materials, quantum computers, advanced therapies and much more can emerge from this endeavour. More information at www.kinsis.uni-kiel.de/en

Christian-Albrechts-Universität zu Kiel
Press, communication and marketing, Dr Boris Pawlowski, Text: Claudia Eulitz
Address: D-24098 Kiel, telephone: +49 (0)431 880-2104, fax: +49 (0)431 880-1355
Email: presse@uv.uni-kiel.de, internet: www.uni-kiel.de

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2015-198-zinnoxid&lang...

Dr. Boris Pawlowski | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>