Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The shape of a perfect fire

08.06.2015

A new Duke theory identifies the height-to-base ratio that helped humanity master fire and migrate across the globe

From ancient Egyptians roasting a dripping cut of beef next to the Great Pyramid of Giza to a Boy Scout learning to build a log cabin fire in his backyard, everyone builds fires with the same general shape.


Today in Nature Scientific Reports, engineering professor Adrian Bejan shows that the best campfires are roughly as tall as they are wide. The shape is the most efficient for the flow of air and heat.

"Our bonfires are shaped as cones and pyramids, as tall as they are wide at the base. They look the same in all sizes, from the firewood in the chimney, to the tree logs and wooden benches in the center of the university campus after the big game," Bejan said.

Courtesy of Duke University

And now we know why.

In a study published in Nature Scientific Reports on June 8, Adrian Bejan, the J.A. Jones professor of mechanical engineering at Duke University, shows that, all other variables being equal, the best fires are roughly as tall as they are wide. This is why, he argues, everyone has built fires that basically look the same since the dawn of time.

... more about:
»Egyptians »Nature »evolve »heat flow »movement »pyramids

'Humans from all eras have been relying on this design,' said Bejan. 'The reason is that this shape is the most efficient for air and heat flow. Our success in building fires in turn made it possible for humans to migrate and spread across the globe heat flow from fire facilitates the movement and spreading of human mass on the globe, which is a direct prediction of the Constructal Law.'

In 1996, Bejan penned the Constructal Law that postulates that movement -- or 'flow' -- systems such as trees, rivers or air currents evolve into configurations that provide easier and easier access to flows. Now internationally recognized, the law is increasingly finding applications in improving design and maximizing efficiency of manmade systems.

Bejan continued, 'Our bonfires are shaped as cones and pyramids, as tall as they are wide at the base. They look the same in all sizes, from the firewood in the chimney, to the tree logs and wooden benches in the center of the university campus after the big game. They look the same as the pile of charcoal we make to grill meat. And now we know why.'

So the next time you're out camping and want to build the perfect fire, now you know what general shape it should take.

But you already knew that, didn't you?

###

'Why humans build fires shaped the same way.' Adrian Bejan. Nature Scientific Reports, 2015; 5:11270. DOI: 10.1038/srep11270

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

Further reports about: Egyptians Nature evolve heat flow movement pyramids

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>