Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The shape of a perfect fire

08.06.2015

A new Duke theory identifies the height-to-base ratio that helped humanity master fire and migrate across the globe

From ancient Egyptians roasting a dripping cut of beef next to the Great Pyramid of Giza to a Boy Scout learning to build a log cabin fire in his backyard, everyone builds fires with the same general shape.


Today in Nature Scientific Reports, engineering professor Adrian Bejan shows that the best campfires are roughly as tall as they are wide. The shape is the most efficient for the flow of air and heat.

"Our bonfires are shaped as cones and pyramids, as tall as they are wide at the base. They look the same in all sizes, from the firewood in the chimney, to the tree logs and wooden benches in the center of the university campus after the big game," Bejan said.

Courtesy of Duke University

And now we know why.

In a study published in Nature Scientific Reports on June 8, Adrian Bejan, the J.A. Jones professor of mechanical engineering at Duke University, shows that, all other variables being equal, the best fires are roughly as tall as they are wide. This is why, he argues, everyone has built fires that basically look the same since the dawn of time.

... more about:
»Egyptians »Nature »evolve »heat flow »movement »pyramids

'Humans from all eras have been relying on this design,' said Bejan. 'The reason is that this shape is the most efficient for air and heat flow. Our success in building fires in turn made it possible for humans to migrate and spread across the globe heat flow from fire facilitates the movement and spreading of human mass on the globe, which is a direct prediction of the Constructal Law.'

In 1996, Bejan penned the Constructal Law that postulates that movement -- or 'flow' -- systems such as trees, rivers or air currents evolve into configurations that provide easier and easier access to flows. Now internationally recognized, the law is increasingly finding applications in improving design and maximizing efficiency of manmade systems.

Bejan continued, 'Our bonfires are shaped as cones and pyramids, as tall as they are wide at the base. They look the same in all sizes, from the firewood in the chimney, to the tree logs and wooden benches in the center of the university campus after the big game. They look the same as the pile of charcoal we make to grill meat. And now we know why.'

So the next time you're out camping and want to build the perfect fire, now you know what general shape it should take.

But you already knew that, didn't you?

###

'Why humans build fires shaped the same way.' Adrian Bejan. Nature Scientific Reports, 2015; 5:11270. DOI: 10.1038/srep11270

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

Further reports about: Egyptians Nature evolve heat flow movement pyramids

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>