Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The scientists from MSU developed a basis for highly sensitive gas sensors

27.12.2017

A team from the Faculty of Physics of Lomonosov Moscow State University suggested using porous silicon nanowire arrays in highly sensitive gas sensors. These devices will be able to detect the presence of toxic and non-toxic gas molecules in the air at room temperature. The results of the study were published in Physica Status Solidi A: Applications and Materials Science journal.

Taking into account high levels of environmental pollution in the modern world, it is important to develop new sensitive devices able to identify molecules in gas phase accurately and selectively. This is true both for toxic and non-toxic gases.


Principle of the operation of the sensor based on porous silicon nanowire arrays.

Credit: Liubov Osminkina

However, the majority of modern gas sensors only work at high temperatures which limits the scope of their application. Therefore the development of reusable highly sensitive gas detectors working at room temperatures is an important area of modern physics development.

The scientists from MSU suggested using porous silicon nanowire arrays as sensitive elements of such detectors. They can be obtained by means of a cheap method of the metal-assisted chemical etching. It is based on selective chemical etching, i.e. partial removal of surface layer from a bulk crystalline silicon with the use of metal nanoparticles as a catalyst. Moreover, the procedure is quite quick: at least 100 elements can be produced in a lab within just one hour.

Each sensor consists of an array of 10 micron long organized silicon nanowires with diameters ranging from 100 to 200 nm. Each nanowire has porous crystalline structure. The size of silicon crystals and pores between them in individual nanowire, varies from three to five nanometers.

Authors have shown that such porous nanowires have huge specific surface area due to which their physical and chemical properties are extremely sensitive to molecular environment. It was also found out that the obtained samples exhibited an effective photoluminescence in the red spectrum region at room temperature.

"For the first time we've shown that photoluminescence of silicon nanowires is quenched in oxygen (O2) atmosphere but then restored to initial values in the atmosphere of a noble gas - nitrogen (N2). This is repeated in several adsorption-desorption cycles," said Liubov Osminkina, the head of the scientific group, PhD in physics and mathematics, and senior associate at the Faculty of Physics, MSU.

The scientists explained obtained experimental results with a microscopic model according to which the sensitivity of optical properties of the samples to their molecular environment is determined by reversible charging and discharging of Pb-centers - defects such as silicon dangling bonds on the surface of the nanowires. The authors of the study confirmed the model with measurements taken by using the electronic paramagnetic resonance method that helps determine existence and concentration of Pb-centers.

"What's important is that our sensors based on porous nanowires both work at home temperatures and also are reusable, because the all observed effects were completely reversible," added Liubov Osminkina.

The new sensors may be used both for effective control of environment pollution levels and for the monitoring of air composition in closed spaces, from classrooms to space stations.

###

The work was supported with a grant of Russian Scientific Foundation.

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

More articles from Materials Sciences:

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

nachricht Neutrons provide insights into increased performance for hybrid perovskite solar cells
24.04.2018 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>